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1 Introduction

The Anti-DeSitter/Conformal field theory correspondence is a duality between a theory of
quantum gravity in AdS space and a conformal field theory on the boundary of AdS space.
This duality is an example of holography, that is equivalence of a theory in d dimensions
with a theory in d − 1 dimensions. The AdS/CFT correspondence originally developed
by Maldacena in [7] posits the equivalence of Type IIB string theory on AdS5 × S5 and
N = 4 super Yang-Mills in 4 dimensions. This equivalence rests on the dual interpretation
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of certain dynamical objects in string theory called D-branes. This is an extremely power-
ful correspondence since as we will see, it related a strongly coupled theory (N = 4 super
Yang-Mills) to a weakly coupled theory (Type IIB string theory on AdS5 × S5) and hence
non perturbative calculations can be done using perturbative string theory. Although the
correspondence has not been rigorously proven, substantial amount of evidence has been
demonstrated in favour of the correspondence and hence the AdS/CFT correspndence re-
mains the AdS/CFT conjecture.

In this short review, we discuss this correspndence. We start by discussing aspects of
AdS spaces and conformal field theory. We provide a toy example of the correspondence
using scalar fields coupled to gravity in AdS space and a conformal field theory in Minkowski
space. Finally we discuss the original Maldacena’s proposal of the correspondence.

2 The Anti-deSitter Space

We begin by defining the AdS space.

2.1 Definition of AdSd+1

The easiest way to describe the AdS space is by embedding it in d + 2 dimensional
Minkowski space. Let

(
Rd,2, ηµν

)
be the d + 2 dimensional Minkowski space with coor-

dinates (T1, T2, X1, . . . , Xd). The metric is

ds2 = −dT 2
1 − dT 2

2 +

d∑
i=1

dX2
i .

We now consider the following function f ∈ C∞(Rd,2) :

f (T1, T2, X1, . . . , Xn) = T 2
1 + T 2

2 −
d∑

i=1

X2
i − ℓ2.

where ℓ ̸= 0 is a constant real number. Consider the zero set of this function:

f−1({0}) := {p ∈ Rd,2 | f(p) = 0}.

The Jacobian of this function is[
∂f

∂T1

∂f

∂T2

∂f

∂X1
· · · ∂f

∂Xn

]
≡
[
2T1 2T2 −2x1 · · · −2xn

]
which is 0⃗ only at (0, 0, . . . 0) /∈ f−1({0}). Thus f−1({0}) is a regular level set and by Regular
level set theorem, f−1({0}) is a regular submanifold of Rd,2 and dimension d+2−1 = d−1.
The coordinates on f−1({0}) is given by t, r, θ1, . . . , θd−1 with the transformations given by

T1 =
√
r2 + ℓ2 cos t, T2 =

√
r2 + ℓ2 sin t

X1 = r cos θ1, X2 = r sin θ1 cos θ2, X3 = r sin θ1 sin θ2 cos θ3, . . .
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Clearly
X⃗2 =

∑
i

X2
1 = r2 and T 2

1 + T 2
2 = r2 + ℓ2.

So these coordinates automatically satisfy the constraint and we only have d+1 coordinates
to describe f−1({0}) as is appropriate for a d + 1 dimensional space. We now induce
the metric from the ambient Minkowski space to the submanifold f−1({0}) by simply
substituting the above transformations:

dT1 =
r√

r2 + ℓ2
dr cos t−

√
r2 + ℓ2 sin tdt

dT2 =
r√

r2 + ℓ2
dr sin t+

√
r2 + ℓ2 cos tdt

dX⃗2 = dr2 + r2dΩ2
d−1

where dΩ2
d−1 is the metric on Sd−1. This is obvious from the fact that the transformation

Xi = Xi (r, θ1, θ2, . . . , θn) is simply the generalised spherical polar coordinate transforma-
tion. For example

d = 2, dΩ2
1 = dθ

d = 3, dΩ2
2 = dθ2 + sin θdϕ2

and so on. Thus the metric on f−1({0}) is given by

ds2 =−
(

r√
r2 +R2

dr cos t−
√
r2 + ℓ2 sin tdt

)2

−
(

r√
r2 + ℓ2

dr sin t+
√
r2 + ℓ2 cos tdt

)2

+ dr2 + r2dΩ2
d−1

= − r2

r2 + ℓ2
dr2 cos2 t−

(
r2 + ℓ2

)
sin2 tdt2 + 2rdr cos t sin tdt

− r2

r2 + ℓ2
dr2 sin2 t−

(
r2 + ℓ2

)
cos2 tdt2 − 2rdr cos t sin tdt+ dr2 + r2dΩ2

d−1

= −
(
r2 + ℓ2

)
dt2 + dr2

(
1− r2

r2 +R2

)
+ r2dΩ2

d−1

= −
(
r2 + ℓ2

)
dt2 + dr2

(
ℓ2

r2 + ℓ2

)
+ r2dΩ2

d−1

= −
(
r2 + ℓ2

)
dt2 +

dr2

1 + r2

ℓ2

+ r2dΩ2
d−1.

So the metric on f−1({0}) is given by

ds2 = −
(
r2 + ℓ2

)
dt2 +

dr2

1 + r2

ℓ2

+ r2dΩ2
d−1. (2.1)

This is the intrinsic metric on f−1({0}) and the coordinates (r, t, θ, . . . , θd−1) are called
global coordinates of f−1({0}). Note that there is an identification of t and t + 2π. So to
avoid repitition, we must restrict t to [0, 2π). Clearly this cannot represent physical time
as this restriction means that we can reach the past by going to the future. Thus f−1({0})
naturally has closed timelike curves. This can be overcome by considering the universal
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cover of f−1({0}). The space parametrised by (t, r, θ1, . . . , θn−1) with t ∈ R with the metric
in (2.1) is the universal cover of AdSd+1 and this space is called the (d + 1)-dimensional
anti-Desitter space AdSd+1. We write it explicitly below:

The AdSd+1 space is defined by the metric

ds2 = −
(
r2 + ℓ2

)
dt2 +

dr2

1 + r2

ℓ2

+ r2dΩ2
d−1

r ∈ [0,∞), t ∈ R,
(2.2)

where dΩ2
d−1 is the round metric on Sd−1 and ℓ ̸= 0 is the AdS radius.

2.2 Symmetries

The Minkowski space Rd,2 has the isometry group SO(d, 2) ⋉ Rd,2. Infact it is one of the
maximally symmetric spaces. The AdSd+1 is another maximally symmetric space with
isometry group SO(d, 2). If is clear that f−1({0}) also has isometry group SO(d, 2) since
f remains invariant under such a transformation. But this not clear from the metric on
f−1({0}). On taking the universal cover, the isometry group also becomes the cover of
SO(d, 2). Also AdSd+1 is one of the three homogenous and isotropic spaces. By homogenous,
we mean that the isometry group acts transitively on the space and by isotropic we mean
that the isometry group acts on the tangent space transitively fixing the point of tangency.

2.3 Geometry of AdSd+1

To understand the geometry of AdSd+1, we make further change of coordinates. Introduce
r = R tan ρ with r ∈ [0,∞) so that ρ ∈ [0, π/2). Then the metric becomes

ds2 = ℓ2 sec2 ρ
(
−dt2 + dρ2 + sin2 ρdΩ2

d−1

)
• Near ρ = 0, sec ρ ≈ 1, sin2 ρ ≈ ρ2 so

ds2 ≃ ℓ2(−dt2 + dρ2 + ρ2dΩ2
d−1)︸ ︷︷ ︸

flat metric

So near ρ = 0 (origin) the AdS metric is flat. Also note that ρ has finite range.

• Near ρ = π
2

sin ρ ≈ 1, sec ρ ≈ 1
π
2 − ρ

.

The metric becomes

ds2 ≃ ℓ2(
π
2 − ρ

)2 (−dt2 + dρ2 + dΩ2
d−1

)
.

Upto the divergent scaling factor, the metric in (t, ρ) is the 1 + 1 Minkowski metric
along with the (d− 1)-dimensional round metric.
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With these two information, we can represent AdSd−1 as a cylinder shown below.

Figure 1. AdSd+1 as a cylinder

Note that although the range of ρ is finite, the radial distance from the origin to the
boundary is

ℓ

∫ π/2

0
sec ρ dρ =∞.

But it turns out that although the boundary is infinitely far away from the origin, the AdS
space behaves as a finite box. To see this, consider a radial null geodesic in AdS space. Null
geodesics satisfy ds2 = 0. Also since we are considering radial null geodesics dΩ2

d−1 = 0.
Thus ds2 = 0 implies

dt = ±dρ.

Thus light ray travels at 45◦. Now suppose we send a light ray from origin towards boundary
and place a reflector at the boundary, so that the light ray bounces back and comes to
origin again. From Fig. 2 below it is clear that, the light ray returns back after time π
(dimensionless). Thus although the radial distance from origin to boundary is ∞, AdS
behaves as a finite box.
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Figure 2. Null geodesics in AdSd+1

The boundary of AdSd+1 is topologically R×Sd−1. We change coordinates so the boundary
looks flat. This is done by introducing the Poincaré coordinates. Introduce the coordinates
y > 0 and (t, x⃗) ∈ Rd−1 via:

X0 =
1

2y

(
1 + y2

(
ℓ2 + x⃗2 − t2

))
Xd = ℓyt

Xd−1 =
1

2y

(
1− y2

(
ℓ2 − x⃗2 + t2

))
Xi = ℓyxi

where (i = 1 . . . d − 2) and x⃗2 =
∑d−2

i=1 x
2
i . One then easily checks that in this coordinate,

the AdS metric takes the form

ds2 =
ℓ2

y2
dy2 +

y2

ℓ2
ηµνdx

µdxν (2.3)

where xµ = (t, x⃗). Substitution u = ℓ2/y we have dy2 = ℓ4/u4du2 and ℓ2/y2 = u2/ℓ2 and
we get

ds2 =
ℓ2

u2
(
du2 + ηµνdx

µdxν
)

which is the metric in Poincaré coordinates. It is now clear that the AdS metric is confor-
mally equivalent to the Minkowski metric.
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2.4 Dynamincs

The AdSd+1 metric gµν satisfies Einstein’s equation

Rµν −
1

2
Rgµν = 8πGTµν (2.4)

where
Tµν = −d(d− 1)

16πGR2
gµν . (d ≥ 2).

The constant
Λ = −d(d− 1)

16πGℓ2

is called the cosmological constant. Indeed, the Einstein equation (2.4) can be obtained
from the action

SAdS =
1

16πG

∫
ddx
√
−g(R+ Λ).

So AdS is a negative cosmological constant solution to Einstein’s equation.

2.5 Quantisation of Scalar field on AdS space

Consider a scalar field ϕ : AdSd+1 −→ R. The corresponding action is

S = −1

2

∫
dd+1x

√
−ggµν∂µϕ∂νϕ+m2ϕ2.

The equation of motion for ϕ is
□ϕ−m2ϕ = 0

where
□ϕ =

1√
−g

∂µ
(√
−ggµν∂νϕ

)
.

Using the AdS metric (2.1), we get

□ϕ =
1

rd−1

∂

∂r

[
rd−1∂ϕ

∂r

(
1 +

r2

ℓ2

)]
+

1

r2
∇2

Sd−1ϕ−
1

r2 + ℓ2
∂2t ϕ−m2ϕ = 0,

where ∇2
Sd−1 is the Laplacian over Sd−1. For example, for d = 3

∇2
S2 :=

1

sin θ

∂

∂θ

(
sin θ

∂

∂θ

)
+

1

sin2 θ

∂2

∂ϕ2

Inductively, one can define ∇2
Sd−1 as:

∇2
Sd−1 =

1

(sin θ1)
d−2

∂

∂θ

(
(sin θ)d−2 ∂

∂θ

)
+

1

sin2 θ
∇2

Sd−2

We now want to find the general solution to the equation of motion. To find the general
solution, we use seperation of variables. To do this, we look at symmetries. Since the metric
has manifest SO(d) symmetry, one factor of the solution is the solution to

∇2
Sd−1Yl,m⃗(θ⃗) = −l(l + d− 2)Yl,m⃗(θ⃗).
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where Yl,m⃗(θ⃗) are the spherical harmonics in d dimensions. The time translation symmetry
asks for one factor of e−iωt. We keep r-dependence explicit. So the trial solution is

ϕ(r, t, θ⃗) = e−iωtYl,m⃗(θ⃗)ψ(r) (2.5)

Plugging in this trial solution, we get(
1 +

r2

l2

)
ψ′′ +

[
d− 1

r

(
1 +

r2

l2

)
+

2r

l2

]
ψ′ +

[
ω2

r2 + l2
− l(l + d− 2)

r2
−m2

]
ψ = 0.

Near r = 0, the above equation reduces to

ψ′′ +
d− 1

r
ψ′ − l(l + d− 2)

r2
ψ = 0

Using the ansatz ψ = crα, we get

α(α− 1) + (d− 1)α− l(l + d− 2) = 0

whose solutions are α = l,−l−d+2. Note that α = −ℓ−d+2 gives singular solution near
r = 0 and hence we discard it.

Near r =∞, the above equation reduces to

r2

l2
ψ′′ +

(d+ 1)

l2
rψ′ −m2ψ = 0

Using the ansatz ψ(r) = krβ we get

β(β − 1)
1

l2
+

(d+ 1)β

l2
−m2 = 0

whase solutions are
β = −d

2
± 1

2

√
d2 + 4m2l2.

Note that if we choose sign, β > 0 and hence the solution diverges. So the acceptable
solution is

−∆ ≡ β = −d
2
− 1

2

√
d2 + 4m2l2.

Since the differential equation for ψ is a linear second order ordinary differential equation,
it has two linearly independent solutions say f+and f−. Then ignoring boundary conditions

ψ(r) = Af+(r) +Bf−(r)

Boundary condition at r = 0 fixes A
B and boundary condition at r = ∞ also fixes A

B . We
now need to make sure that these two conditions match. This is done using adjusting ω.
The final result turns out to quantise to be a discrete quantity. To be precise ω is restricted
to

ωnl = ∆+ l + 2n, n ∈ N ∪ {0}.
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The solution for ψ is then

ψnl(r) = Cnl(sin ρ)
l(cos ρ)∆P

d−1
2

,∆− d
2

n (cos 2ρ) (2.6)

where as before r = tan ρ, Cn,l are constants and P
(α,β)
n (z) are the Jacobi Polynomials

given by

P (α,β)
n (z) =

(α+ 1)α · · · (α− n+ 2)

n!
F1

(
−n, 1 + α+ β + n, α+ 1,

1

2
(1− z)

)
and 2F1 are the Hypergeometric functions. The solution to the equation of motion is thus
given by

fnlm⃗(t, r, θ⃗) = ψnl(r)Ylm⃗(θ⃗)e−iωnlt

and the general solution is

ϕ(t, r, θ⃗) =
∑
n,l,m⃗

[
anlm⃗fnlm⃗(t, r, θ⃗) + a†nlm⃗f

∗
nlm⃗(t, r, θ⃗)

]
.

We now define an inner product on the space of classical solutions. For any two solutions
g, f to □ϕ−m2ϕ = 0, define

⟨g, f⟩ = i

∫
Σ
ddx
√

det γ nµ (g∗∂µf − f∂µg∗)

Here Σ is a spacelike slice t = t0, γ
αβ is the metric on Σ, nµ is the normal to Σ, that is

n0 ̸= 0 and ni = 0 which is also normalised such that that is

gµνn
µnν = −1 =⇒ g00

(
n0
)2

= −1

that is n0 =
√
−g00. The inner product then becomes

⟨g, f⟩ = i

∫
Σ
ddx
√
det γ

1
√
g00

(g∗∂tf − f∂tg∗) . (2.7)

One can show that ⟨g, f⟩ is independent of t0 and Σ. With this inner product, the constants
Cnl in (2.6) can be chosen so that [2]

⟨fnlm⃗, fn′l′m⃗′⟩ = δnn′δll′δm⃗m⃗′ .

We now perform cannonical quantisation by imposing

[ϕ(t, x⃗),Π(t, y⃗)] = δ(d)(x⃗− y⃗),

where
Π(t, y⃗) =

∂L
∂ (∂tϕ(t, y⃗))

This gives us the commutator of oscillators[
anlm⃗, a

†
n′l′m⃗′

]
= δnn′δll′δm⃗′m⃗′
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and other commutators are trivial. Now to define ground state, we need a time coordinate
since the ground state is defined to be the lowest eigenvalue state of the time translation
symmetry generator (the Hamiltonian). We already have a time coordinate and since anlm⃗
is the coefficient of eiωnlt, it annihilates the vacuum and a†nlm⃗ creates states. Thus

anlm⃗|0⟩ = 0

and a†nlm⃗|0⟩ is a single particle state with energy ωnl. The state a†nlm⃗a
†
n′l′m′ |0⟩ is a two

particle state with energy ωnl + ωn′l′ .

Remark 2.1. Although we are calling above states as one, two or multiparticle states but it
is not so since for particle interpretation we need continuous momentum and energy which
is not available here.

Other excited states can be written as

k∏
i=1

a†nilim⃗i
|0⟩

with energy

ωk =
k∑

i=1

(∆ + 2ni + li) .

Note that the generators of manifest SO(d) symmetry and time translation symmetry are
Noether charges of these symmetries which are quadratic in oscillators a and a†. After
normal ordering, these generators annihilate the vacuum. The full SO(d, 2) invariance of
the vacuum is more involved to prove.
Interactions can be treated perturbatively if the coupling constants are small. There are UV
divergences but we will consider these theories as embedded in some string theory which is
UV finite due to a cutoff.
Other fields like fermions, Aµ, gµν can be treated similarly. In particular for Aµ and gµν
one has to take care of gauge freedom and diffeomorphism invariance. For metric, we will
usually take

gµν ≈ gAdS
µν + hµν

where hµν is a small perturbation around background metric gAdS
µν . To do this we expand

the Einstein-Hilbert action in hµν and treat the nonlinear terms as interactions. Later we
will deal with black holes in AdS. We now list the observables in the quantum theory. First
class of observables are the energies. Others are correlation functions.〈∏

i

ϕi(xi)

〉
≡

〈
0

∣∣∣∣∣∏
i

ϕi

(
t, ri, θ⃗i

)∣∣∣∣∣ 0
〉

These can be calculated in terms of f inlm⃗ and f i∗nlm. These are also restricted by SO(d, 2)

invariance. We now face a problem. The correlation functions is a function of xi. In
absence of gravity, one can use distances and angles as arguments of functions which are
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invariant under general coordinate transformation. But in a quantum theory of gravity, the
distances and angles do not have an invariant meaning. So in a quantum theory of gravity,
correlation functions are not good observables. But we can construct observables using
correlation functions. Quantisation does not allow metric to fluctuate near the boundary.
The fluctuations hµν → 0 near boundary. So if we take r →∞ in the correlation functions,
then we get exact observables. So the observables are

lim
r→∞

k∏
i=1

r∆i

〈∏
i

ϕi

(
ti, r, θ⃗i

)〉

where we attached r∆i to get a finite number since

ϕ(r, t, θ⃗i) −→ r−∆f(t, θ⃗) as r →∞.

Note that the observables above are functions of ti, θ⃗i where θ⃗i are coordinates on Sd−1 and
ti ∈ R. Thus we have observables on the boundary R×Sd−1 of AdSd+1. One can show that
[2]

lim
r→∞

r2∆
〈
ϕ(r, t, θ⃗)ϕ

(
r, t′, θ⃗′

)〉
∝
(

1

cos (t− t′)− cosα

)∆

(2.8)

where α is the geodesic distance between θ⃗ and and θ⃗′ on Sd−1. But there is another issue.
Under a general SO(d, 2) transformation

r → F (t, θ⃗)r

where F (t, θ⃗) is some function. Thus the boundary correlation functions transform as

lim
r→∞

〈∏
i

r∆iϕi (xi)

〉
r→∞−→

(∏
i

F (t, θ⃗)∆i

)
lim
r→∞

〈∏
i

r∆iϕi (xi)

〉
.

We will discuss the implications of this later.

3 Conformal Field Theory

We will consider CFT in fixed background geometry without gravity. The background
metric is not necessarily flat.

3.1 General Aspects of CFT

CFT is an ordinary QFT with the property that

Tµν(x)g
µν(x) = 0.

where Tµν is the stress-energy tensor. That is the stress tensor is traceless. This is an
operator statement which means this is required inside a correlation function. In a simplistic
view of a CFT, suppose that the tracelessness of the stress tensor holds without the use of
equation of motion. The stress tensor is given by

Tµν ∝
δS

δgµν
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where S is the action of the theory. Suppose

gµν −→ gµν + δgµν = e2Ω(x)gµν

where Ω(x) is an infinitesimal function. Then it is easy to see that gµνTµν = 0 is equivalent
to the action S being invariant under gµν(x) −→ e2Ω(x)gµν .
The correlation functions are invariant under conformal transformations〈∏

i

Oi (xi)

〉
gµν

=

〈∏
i

Oi (xi)

〉
e2Ω(x)gµν

But in general, the stress tensor is not traceless at quantum level. Several subtle issues may
arise. For one example, suppose Tµνgµν = 0 after using equation of motion. Then the trace
must be proportional to the equations of motion

Tµνg
µν =

∑
i

Ci ({ϕi})
δS

δϕi

where ϕi are the fields of the theory. Note that under

ϕi −→ ϕi +NCi ({ϕi})

where N is some constant,

δS =
∑
i

δS

δϕi
δϕi = N

∑
i

ci ({ϕi})
δS

δϕi

= NTµνg
µν .

Thus upon using equations of motion, S is invariant under

gµν → e2Ω(x)gµν and ϕi −→ ϕi +NCi ({ϕi})

Thus in general 〈∏
i

O′
i (xi)

〉
e2Ω(x)gµν

=

〈∏
i

Oi (xi)

〉
gµν

where O′
i are transformed operator under gµν → e2Ω(x)gµν . So the operators need to be

transformed. Another issue is Tµνgµν = 0 may hold only in flat background. This is called
the conformal anomaly. In general

Tµνg
µν ∝ terms involving Riemann tensor.

For example in 2d, it is proportional to Ricci scalar. In general〈∏
i

O′
i (xi)

〉
e2Ω(x)gµν

=

〈∏
i

Oi (xi)

〉
gµν

exp[A(g,Ω)]
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where the function A depends on terms appearing in Tµνgµν . There are some special kind of
operators called conformal primaries. Operators Oi are called conformal primary operators
of conformal dimension ∆i if〈∏

i

Oi (xi)

〉
e2Ω(x)gµν

= exp

(
−
∑
i

∆iΩ(xi)

)〈∏
i

Oi (xi)

〉
gµν

. (3.1)

Other operators which do not transform in this specific way are called secondary oper-
ators. Another important feature of a CFT is the state-operator correspondence. The
state-operator correspondence asserts that there is a one-to-one correspondence between
states of the theory and local operators. Thus we can use the operator algebra of the
theory or the Hilbert space interchangeably. This will have implications in the AdS/CFT
correspondence. In general, a classical field theory is conformally invariant if the action
has no dimensionful couplings, since dimensionful couplings set a scale in the theory which
breaks the scale invariance and hence breaking the conformal invariance. At the quantum
level, things are more complicated. Due to loop corrections, the conformal invariance may
be broken and the stress tensor may not remain traceless at the quantum level as dis-
cussed above. Indeed, for a theory to be conformally invariant, a necessary condition is the
vanishing of the renormalisation group beta functions for every coupling g:

βg(µs) = µs
∂g

∂µs
.

3.2 CFT with flat Minkowski background

(3.1) is a relation between QFT in two different backgrounds. We want to see if we can get
relations in same background. To proceed, we start with the flat metric gµν = ηµν . Under
a general coordinate transformation

xµ −→ fµ
(
x′
)

ηµν −→
∂xα

∂x′µ
∂xβ

∂x′ν
ηαβ =: g′µν

The correlators change as 〈∏
i

Oi (xi)

〉
ηµν

=

〈∏
i

Oi

(
x′i
)〉

g′µν

(3.2)

where we are considering scalar operators Oi so that they do not change. Now under
conformal transformations

g′µν = e2Ω(x)ηµν

R.H.S of (3.2) becomes 〈∏
i

Oi

(
x′i
)〉

e2Ω(x)ηµν

.
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If in addition, the theory is a CFT,〈∏
i

Oi

(
x′i
)〉

e2Ω(x)ηµν

= exp

(
−
∑
i

∆iΩ(xi)

)〈∏
i

Oi

(
x′i
)〉

ηµν

.

For flat space, the independent conformal transformations are

1. Translations: xµ −→ xµ + aµ

2. Lorentz transformation: xµ −→ Λµ
νxν

3. Scaling: xµ −→ λxµ

4. Special Conformal transforamtions:

xµ −→ xµ + aµx2

1 + 2a · x+ a2x2
(3.3)

Also the algebra is so(d, 2). Combining (3.2) and (3.1), we get〈∏
i

Oi

(
x′i
)〉

ηµν

= exp

(∑
i

∆iΩ
(
x′i
))〈∏

i

Oi (xi)

〉
ηµv

(3.4)

For example, consider x′µ = λxµ for some constant λ. Then

gµν = λ−2ηµν

Thus (3.4) gives 〈∏
i

Oi (λxi)

〉
ηµν

= λ−
∑

i ∆i

〈∏
i

Oi (xi)

〉
ηµν

(3.5)

This fixes the two point function up to a constant. Poincaré invariance says that

⟨O (x1)O (x2)⟩ = f
(
(x1 − x2)2

)
(3.6)

where f is some function. Then (3.5) gives

f
(
λ2 (x1 − x2)2

)
= λ−2∆f

(
(x1 − x2)2

)
.

This implies

f
(
(x1 − x2)2

)
=

C

(x1 − x2)2∆

where C is some constant.

Remark 3.1. Although we did not check the tranformation of correlation function under
special conformal transformation, one can show that SCT constrains the conformal weights
of the two operators in the 2-point function to be same.
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4 The AdSd+1/CFTd Correspondence

Before we rigorously state the AdS/CFT conjecture, let us explore the examples we con-
sidered in Subsections 2.5 and 3.2, namely a scalar field with dynamical gravity in AdSd+1

space and a CFT with flat Minkowski space background.

4.1 Scalar Field in AdSd+1 space and CFTd in flat Minkowski space

We start with the CFT correlator (3.6). One can make a Wick rotation t1 → ix01, t2 → ix02
to get

(x1 − x2)2 =
(
x01 − x02

)2
+ (x⃗1 − x⃗2)2

since the Minkowski metric changes to Euclidean metric upon Wick rotation. The 2-point
correlator has the form

⟨O (x1)O (x2)⟩ =
c[(

x01 − x02
)2

+ (x⃗1 − x⃗2)2
]∆

We change to polar coordinates

x0 = ρ cos θ1

x1 = ρ sin θ1 cos θ2

x2 = ρ sin θ1 sin θ2 cos θ3

and so on. The metric is
ds2 = dρ2 + ρ2dΩ2

d−1

We use the SO(d) rotation symmetry of the metric to set

x1 = (ρ1, 0, 0, . . . 0)

x2 =
(
ρ2, θ

1
2, 0, . . . 0

)
Then

(x1 − x2)2 =
(
ρ1 − ρ2 cos θ12

)2
+
(
ρ2 sin θ

1
2

)2
= ρ21 + ρ22 − 2ρ1ρ2 cos θ

1
2.

Note that θ12 can be interpreted as the geodesic seperation of x1 and x2 on Sd−1 (see Figure
3 below). The 2-point correlator becomes

⟨O (x1)O (x2)⟩ =
C(

ρ21 + ρ22 − 2ρ1ρ2 cos θ12
)∆

We now change coordinates to
ρ = eτ

keeping other variables same. Then

ds2 = e2τ
(
dτ2 + dΩ2

d−1

)︸ ︷︷ ︸
metric on R×Sd−1
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Figure 3. θ12 as the geodesic distance between x1 and x2 on Sd−1

By (3.2) we have

⟨O (x1)O (x2)⟩(R×Sd−1)e2τ =
C(

e2τ1 + e2τ2 − 2eτ1+τ2 cos θ12
)∆

Then using (3.4) we get

⟨O (x1)O (x2)⟩R×Sd−1 =
Ce(τ1+τ2)∆(

e2τ1 + e2τ2 − 2eτ1+τ2 cos θ12
)∆

=
C

2∆
(
cosh (τ1 − τ2)− cos θ12

)∆
We now again analytically continue to complex τ and evaluate at τ = it to get to Minkowski
metric. We get

⟨O (x1)O (x2)⟩R×Sd−1 =
C ′(

cos (t1 − t2)− cos θ12
)∆

This is exactly the same as the boundary two point correlator in (2.8) of a scalar field in
AdS space upto a constant. We make a few remarks on this observation.

Remark 4.1. We make a few remarks about this example.

1. Here we see the first glimpse of AdS/CFT correspondence. Recall that the boundary
of AdSd+1 has the topology of R× Sd−1 and hence we say that quantum theory with
gravity in the bulk of AdSd+1 is “equivalent” to a CFT without gravity on the boundary.
We will make this precise later.

2. Clearly, by equivalence we mean that all correlators in the two theories match. Usually
one lists all boundary correlators of quantum gravity in AdS and conjectures that it
constitutes a CFT on the boundary. Also note that the ∆ and coefficients in correlator
have to match in the two theories.
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3. Roughly, we see that scalar primary operators O(t, x⃗) is related to scalar field ϕ(t, r, θ⃗)
as

O(t, x⃗) = lim
r→∞

r∆ϕ(t, r, θ⃗)

Also since every CFT has a stress tensor Tµν and every quantum gravity has a graviton
gµν , thus

Tµν ←→ gµν .

4. AdS/CFT correspondence also conjectures that the Hilbert space of quantum gravity
+ matter on AdS space is isomorphic to the Hilbert space of the CFT on the boundary.
Thus in continuation to above point, by state-operator correspondence in CFT, all
local operators in the CFT correspond to some state in the AdS theory. In the
particular example of scalar field in AdS, the single particle states

a†nlm⃗|0⟩, with energy ∆+ l + 2n

corresponds to the secondary operators

lim
r→∞

∂µ1 · · · ∂µk
r∆ϕ(r, t, θ⃗),

where the derivatives are along t and θ⃗ and k = l + 2n. The permutations of these
derivatives gives all single particle states in AdS with l + 2n = k.

5. The double particle states
a†nlm⃗a

†
n′l′m⃗′ |0⟩

for a free scalar field in AdS has energy ∆+ l+2n+∆+ l′ +2n′. But note that this
relation is only true in free scalar field theory in AdS, once we add interactions, the
this does not hold true. But physically, if we take large radius limit of AdS taking
ℓ to be large, this relation becomes exact even in interacting theory. Thus we need
to identify a parameter in the corresponding CFT which corresponds to this “large ℓ
limit” of the AdS theory and then we can check if there are local operators in the CFT
whose conformal dimension is ∆+ l+2n+∆+ l′+2n′ in the relavant limit. One such
example which we will explore in detail is the Type IIB string theory in AdS5×S5 and
N = 4 super Yang-Mills in 4d with SU(N) gauge group. In this correspondence, the
large ℓ limit corresponds to the large N limit on the CFT side and there are indeed
local operators whose conformal dimensions are the sum of conformal dimensions of
other local operators.

6. Note that in the above example, we only need the boundary of the quantum gravity
background space to have the geometry of R × Sd−1. But this can be achieved by
allowing more general background spaces for the quantum gravity theory. Indeed,
to get interesting examples of the correspondence, we allow for background metrics
which approach the AdS metric near the boundary in a very specific sense [5]. Such
spaces are called asymptotically AdS spaces. One can be more general by allowing the
background to be asymptotically AdSd+1 ×M where M is some compact manifold
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whose volume remains finite as the AdS radius r → ∞. In this case, the correspon-
dence works as follows: we start with scalar fields1 ϕ : AdSd+1 ×M −→ R. Let x, y
be the coordinates on AdSd+1 and M respectively. Then we can expand the field in
terms of some basis functions {fα(y)}:

ϕ(x, y) =
∑
α

ϕα(x)fα(y). (4.1)

Now ϕα are scalar field on AdSd+1 and we can again proceed as above.

4.2 Precise statement of the correspondence

We now state the AdS/CFT conjecture:

Conjecture 1. Any conformal field theory on R×Sd−1 is equivalent to a theory of quantum
gravity in asymptotically AdSd+1×M where M is some (possibly trivial) compact manifold.

This correspondence raises immediate questions.

Question 4.1. What is the map between the observables on the two sides?

The answer to this question is called the dictionary. We still do not know the entire
dictionary but many important entries of this dictionary have been worked out. Firstly, the
dictionary means that we have a map between the Hilbert spaces of the quantum gravity
theory and the CFT:

Φ : HAdS −→HCFT (4.2)

Next we must have that the unitary operators on the Hilbert space representing the sym-
metries of both the theories must commute with Φ:

Φ ◦ UAdS = UCFT ◦ Φ. (4.3)

A solid evidence for why this may be true is the fact that the group of isometries of the
AdSd+1 is SO(d, 2) which is also the conformal group in d dimensions as observed above.

5 The Correspondence of Type IIB String Theory on AdS5 × S5 with
N = 4 Super Yang-Mills in 4d

We will now present a concrete example of the AdS/CFT correspondence which appeared
in the original paper of Maldacena in this subject [7]. We begin by reviewing the N = 4

Super-Yang Mills (SYM) theory.

5.1 N = 4 SYM Theory in 4d

We first quickly review the supersymmetry conventions and set up the stage to discuss the
theory.

1one can also consider complex scalar fields.
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5.1.1 Super-Poincaré algebra and BPS states

The Super-Poincaré algebra in 4d for N supercharges consists of the usual 10 generators
Mµν , Pµ of the Poincaré algebra and a pair of N supercharges QI

α, Q̄α̇I with I = 1, 2, . . . ,N
satisfying the Majorana condition

Q̄α̇I = (QI
α)

†. (5.1)

The supercharges QI
α and Q̄α̇I transform in the (12 , 0) and (0, 12) representation of SL(2,C).

In addition to these spacetime symmetries, one can have an internal symmetry in the theory
generated by the bosonic generator 2 {Bℓ}. The full algebra is then given by (see [6] for
details): {

QI
α, Q̄β̇J

}
= 2Pµσ

µ

αβ̇
δIJ{

QI
α,, Q

J
β

}
= ϵαβZ

IJ{
Q̄α̇I , Q̄β̇J

}
= −ϵα̇β̇Z̄IJ[

QI
α, P

µ
]
= [Q̄I

β̇
, Pµ] = 0[

QI
α,Mµν

]
= (σµν)

β
αQ

I
β[

Q̄α̇
I ,Mµν

]
= (σµν)

β
α̇ Q̄

β
I

[Bℓ, Bm] = fnℓmBn[
QI

α, Bℓ

]
= SI

ℓ JQ
J
α

[Qα̇I , Bℓ] = (S∗)JℓIQ̄α̇J .

(5.2)

along with the commutators of the Poincaré algebra

i [Mµν ,Mρσ] = ηνρMµσ − ηµρMνσ − ησµMρν + ησνMρµ

i [Pµ,Mρσ] = ηµρPσ − ηµσPρ

i [Pµ, Pρ] = 0.

(5.3)

In this equation, σµ are the Pauli matrices with σ0 = 1, ϵ = iσ2, ZIJ is called the central
charges since one can show that it commutes with all the generators of the algebra and Z̄IJ

are its complex conjugate, σµν and σ̄µν are the standard SL(2,C) generators, fnℓm are the
structure constants of the internal symmetry algebra and {Sℓ} are a representation of the
internal symmetry algebra acting on the supercharges. An explicit automorphism of the
algebra is the transformation of the supercharges by any unitary transformation U :

QI
α → U I

JQ
J
α, Q̄α̇I → (U †)IJQ̄α̇J (5.4)

as long as the central charges transform accordingly. The group of transformations can be
atmost U(N ) and is called the R-symmetry group. The R-symmetry group for N = 4 SYM
turns out to be SU(4). This will be important later as this will correspond to the isometry
group of S5 since SU(4) is the double cover of SO(6).

2in the sense that they satisfy commutation relations rather that anticommutation relations.
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To construct the irreducible representation of the Super-Poincaré algebra, called a super-
multiplet, one first constructs the quadratic Casimirs of the algebra. It turns out that P 2

is still a Casimir but the Pauli-Lubanski pseudovector squared, which was a Casimir in the
Poincaré algebra, no longer commutes with the supercharges and hence is not a Casimir.
As a result the mass is constant in a supermultiplet but the spin can change resulting in
a supermultiplet consisting of a bunch of particles of different spins. To construct these
explicitly, we first define the Clifford vacuum. We now outline the steps of constructing the
supermultiplet.

Vanishing central charge

For vanishing central charge, we define the annihilation and creation operators as

aIα =


1√
2m
QI

α P 2 = m2 > 0

1√
2
QI

α P 2 = 0
, a†α̇I =


1√
2m
Q̄α̇I P 2 = m2 > 0

1√
2
Qα̇I P 2 = 0.

(5.5)

One can show using the Super-Poincaré algebra that{
aIα, a

†
β̇J

}
= δIJδαβ̇. (5.6)

The Clifford vacuum is defined to be annihilated by all annihilation operators aαI . Using
the Casimirs of the algebra one shows that the Clifford vacuum for massive states is charac-
terised by mass m > 0 and spin j with a total of 2j+1 degrees of freedom and transforms in
the usual spin-j representation of the Lorentz algebra and the Clifford vacuum of massless
states is characterised by the helicity λ with two degrees of freedom. Then we construct
the supermultiplet using the creation operators. For the massless supermultiplet, going to
the rest frame one shows that a†

1̇I
= 0 and hence we only have N creation operators. Con-

sequently a general massless state in the supermultiplet is obtained by applying 1 ≤ k ≤ N
number of creation operators and hence the total number of states is

N∑
k=1

(
N
k

)
= 2N .

Next the algebra also shows that the creation operators raise the spin (helicity) by 1/2

and the annihilation operator decrease it by 1/2. Thus a supermultiplet constructed on a
Clifford vacuum |λ0⟩ has the helicity content

|λ0⟩, a†
2̇I
|λ0⟩ ≡ |λ0 +

1

2
⟩I , a†

2̇I
a†
2̇J
|λ0⟩ ≡ |λ0 + 1⟩IJ , . . . , a†

2̇1
. . . a†

2̇N |λ0⟩ ≡ |λ0 +
N
2
⟩

(5.7)
This is not CPT invariant unless

λ0 = −
N
4

(5.8)

and hence in general we need to add the CPT conjugates. The massless supermultiplet for
N = 4 SYM is constructed on λ0 = −1 and hence is CPT invariant. The supermultiplet
has the content: (

−1,4×−1

2
,6× 0,4× 1

2
, 1

)
. (5.9)
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The vector is a singlet under SU(4), the fermions transform in the fundamental repre-
sentation and the six real scalars transform in the fundamental of SO(6). The massive
supermultiplet is constructed similarly with the 2N creation operators. The more interest-
ing massive supermultiplet appears for non-vanishing central charge.

Non-Vanishing central charge

Using the algebra one can show that ZIJ acts trivially on the massless supermultiplets
and hence it remains the same even with non-vanishing central charge. For m > 0, the
creation/annhiliation operators as defined in (5.5) do not satisfy the algebra in (5.6). To
deal with this problem, we transform the supercharges by some U(N ) transformation as in
(5.4) such that the central charge transforms to

ZIJ = U I
KZ

′KL(UT )JL (5.10)

where Z ′IJ has the form

Z ′IJ =



0 Z1

−Z1 0

0 Z2

−Z2 0

· · · · · ·
· · · · · ·

0 ZN/2

−ZN/2 0


(5.11)

for even N and for odd N , we add a zero row and column to Z ′IJ and treat the last su-
percharge as N = 1 case. This is called the Wess-Zumino decomposition. In the above
decomposition, Zi are real and nonnegative. The R- symmetry index I can be now de-
composed into a pair I ≡ (A, a) where 1 ≤ A ≤ N

2 and a = 1, 2 where a is the matrix
index of each block in the Wess-Zumino decomposition is ZAϵ

ab. We then define creation
annihilation operator as

aAα =
1√
2

[
Q1A

α + ϵαβQ̄γ̇2A(σ̄
0)γ̇β

]
,(

aAα̇
)†

=
1√
2

[
Q̄α̇1A + ϵα̇β̇(σ̄

0)β̇γQ2A
γ

]
,

bAα =
1√
2

[
Q1A

α − ϵαβQ̄γ̇2A(σ̄
0)γ̇β

]
,(

bAα̇
)†

=
1√
2

[
Q̄α̇1A − ϵα̇β̇(σ̄

0)β̇γQ2A
γ

]
.

(5.12)

Then these operators satisfy the algebra{
aAα ,

(
aB
β̇

)†}
= (2m+ ZA)σ

0
αβ̇
δBA{

bAα ,
(
bB
β̇

)†}
= (2m− ZA)σ

0
αβ̇
δBA .

(5.13)
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There are now 2N creation operators. One can again show that (aA
1̇
)†, (bA

1̇
)† lower ms of

the Clifford vacuum while (aA
2̇
)†, (bA

2̇
)† raise it. Unitarity of the QFT demands

|ZA| ≤ 2m. (5.14)

This is called the BPS bound and a state which saturates this bound is called a BPS state.
BPS states are special because they are annihilated by some of the creation operators and
hence have lesser degree of freedom than non-BPS states. Indeed if ZA = 2m, then{

bAα , (b
B
β̇
)†
}
= 0 (5.15)

and (bα̇A)
†|m, j⟩ is again vacuum since

bBβb
†
Aα|m, j⟩ = b†AαbBβ |m, j⟩ = 0 (5.16)

for every B, β.

Let 0 ≤ k ≤ [N/2] be the number of ZA which saturate the BPS bound.

• k = 0, no states saturate BPS bound: The oscillators contribute to 22N d.o.f of the
spectrum and it is same as the vanishing central charge spectrum. This is called the
long multiplet.

• 0 < k < [N/2]: k number of oscillators annihilate the multiplet, thus oscillators
contribute to 22(N−k) d.o.f of the spectrum. The spectrum is said to be k

N -BPS
multiplet. The multiplet we get is a stort multiplet.

• k = [N/2]: We get an ultrashort multiplet. Here we have 2N d.o.f from the oscillators
and is called the 1

2 -BPS multiplet.

5.1.2 The N = 4 SYM Lagrangian and its symmetries

Now that we know that massless N = 4 supermultiplet contains a vector boson, 4 Weyl
fermions and 6 real scalars, we can try to construct an offshell field representing this su-
permultiplet. The superfield formalism is not very useful here. So we work in component
formalism. The component fields are Aµ, λIα, ϕ

I where I is the SU(4)R index and α is the
spinor index of the Weyl fermion. If we consider the N = 4 SYM with gauge group SU(N)

then each of the component fields have a gauge index a and each of the fields are Lie alge-
bra valued as in the usual gauge theory. The Lagrangian of the theory can be obtained in
atleast two different ways:

1. From N = 1 Superfields: this requires three chiral superfields and a vector supefield.

2. Dimensional reduction: one can dimensionally reduce the d = 10 N = 1 SYM to
obtain the 4d,N = 4 SYM Lagrangian.

– 22 –



We refer to [1] for details. Using either of the two methods, the 4d,N = 4 Lagrangian can
be written as [3]

L = Tr

(
− 1

2g2YM

FµνF
µν +

θ

8π2
Fµν(∗F )µν − i

∑
I

λ̄I σ̄µDµλI −
∑
I

Dµϕ
IDµϕI

+gYM

∑
I,J,K

CIJ
K λI

[
ϕK , λJ

]
+ gYM

∑
I,J,K

C̄IJK λ̄
I
[
ϕJ , λ̄K

]
+
g2YM

2

∑
I,J

[
ϕI , ϕJ

]2 (5.17)

Here gYM is the coupling constant, θ is called the instanton angle, CIJK is the structure
constant of SU(4)R, Dµ is the gauge covariant derivative defined as

Dµ = ∂µ − igYMAµ = ∂µ − igYMT
aAa

µ, (5.18)

where T a are the generators of SU(N) satisfying

[T aT b] = ifabc T
c, Tr(T aT b) = δab. (5.19)

Fµν is the usual field strength defined by the commutator of Dµ:

Fµν = [Dµ, Dν ] = Fµν
a T a (5.20)

where
F aµν = ∂µA

a
ν − ∂νAa

ν + gYMf
abcAbµAcν . (5.21)

(∗F )µν is the Hodge dual of Fµν . The trace in the Lagrangian is over the gauge index. We
now list the symmetries of the lagrangian.

1. Poincaré invariance: the Lagrangian is easily seen to be invariant under Poincaré
group. It is generated by Pµ,Mµν satisfying the Poincaré algebra (5.3).

2. Gauge invariance: the Lagrangian is gauge invariant since the gauge index is traced
over.

3. Supersymmetry: under supersymmetry the component fields transform as [1]

(δϕI)Jα ≡ [QJ
α, ϕ

I ] = CIJ
Kλ

K
α

(δλβI)
J
α =

{
QJ

α, λβI
}
= F+

µν (σ
µν)αβ δ

J
I +

[
ϕK , ϕL

]
ϵαβ (CKL)

J
I(

δλ̄I
β̇

)J
α
=
{
QJ

α, λ̄
I
β̇

}
= CJI

K σµ
αβ̇
Dµϕ

K

(δAµ)Iα =
[
QI

α, A
µ
]
= σµ

αβ̇
λ̄β̇I

(5.22)

where F+
µν is the self-dual part of Fµν given by

F+
µν =

1

2
(Fµν + (∗F )µν) (5.23)

and the constants (CKL)
J
I is related to the bilinears in Clifford Dirac matrices of

SO(6)R. This is generated by the 4 supercharges QI
α and its conjugate Q̄β̇I .
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4. Conformal invariance: using the mass dimensions of the fields [Aµ] = [ϕ] = 1, [λα] =

3/2 and the mass dimension of the Lagrangian3 [L] = 4, it is easy to see that [gYM ] =

0 = [θ]. Now since all the fields are massless, the action is classically scale invariant.
Infact the Poincaré invariance combines to enhance the symmetry to full conformal
invariance. Infact the theory is conformally invariant at quantum level as well since
the renormalisation beta functions of the coupling constants vanish upto all orders in
perturbation theory and hence quantum corrections do not introduce a mass scale in
the quantum theory. This is generated by the the Poincaré algebra generators along
with the genrator of scaling denoted by D and the special conformal transformation
generator Kµ which acts on space as in (3.3). The full algebra is (5.3) along with

[D,Pµ] = iPµ

[D,Kµ] = −iKµ

[Kµ, Pν ] = 2i (ηµνD −Mµν)

[Kρ,Mµν ] = i (ηρµKν − ηρνKµ)

(5.24)

5. Superconformal invariance: the fact that the theory is invariant under conformal as
well as supersymmetry transformation enlarges the symmetry of the theory to super-
conformal symmetry. For the algebra to close, we need to include another generator
SI
α, S̄β̇I called the conformal supersymmetry generator. The algebra is{

SI
α, S

J
β

}
=
{
QI

α, S̄β̇J

}
= 0{

SI
α, S̄β̇J

}
= 2σµ

αβ̇
Kµδ

I
J{

QI
α, SβJ

}
= ϵαβ

(
δIJD + T I

J

)
+

1

2
δIJMµν (σ

µν)αβ

(5.25)

where {TA}15A=1 are the generators of the SU(4)R symmetry. See [1, Appendix B.3.2]
for the full algebra.

6. S-duality: N = 4 SYM is invariant under the S-duality group SL(2,Z). To describe
this duality, put

τ :=
θ

2π
+

4πi

g2YM

. (5.26)

Then the theory is invariant under

τ → aτ + b

cτ + d
,

(
a b

c d

)
∈ SL(2,Z). (5.27)

This duality is enormously important because it maps a weakly coupled theory to a
strongly coupled theory, this is called the strong-weak coupling duality. Indeed under
the matrix

(
0 1
−1 0

)
, we see that

τ → −1

τ
. (5.28)

3required for the action to be dimensionless.
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When the instanton angle θ = 0 then under this transformation

gYM →
4π

gYM
. (5.29)

This means that a strongly coupled theory gets mapped to a weakly coupled theory.

The above discussion reflects the fact that the full symmetry group of N = 4 SYM theory
is the supergroup SU(2, 2|4).

5.1.3 Representations of the superconformal algebra

We want to construct local, gauge invariant operators in the theory. We restrict to operators
which are polynomials in the local fields Aµ, λα, ϕ so that the scaling dimensions of the
operators is well defined. Now a given local operator O is characterised by the scaling
dimension ∆ and the spin:

[D,O(0)] = −i∆O(0), [Mµν ,O(0)] = −MµνO(0) (5.30)

whereMµν is the representation of the Lorentz generators Mµν on fields. Other generators
of the superconformal algebra act by raising or lowering the scaling dimension. For example
QI

α raises the conformal dimension by 1/2 and SI
α lowers the scaling dimension by 1/2 and

as a result of the superconformal algebra, Pµ and Kµ raise and lower the scaling dimension
by 1 respectively. Now since the conformal supersymmetry generator SI

α lowers the scaling
dimension, there exists operators which are annihilated by SI

α, otherwise we would produce
arbitrarily negative scaling dimension operators which break the unitarity of the theory.
These operators are called the superconformal primary operators. Thus superconformal
primary operators have to satisfy

[SI
α,O} = 0, [S̄α̇I ,O} = 0 (5.31)

where the commutator or anticommutator depends on the operator O being bosonic or
fermionic.

Remark 5.1. Recall that in conformal field theory, primary operators are those which
are annihilated by Kµ. Because of the superconformal algebra, a superconformal primary
operator is a conformal primary operator but the converse is not true.

Now the descendents can be constructed by applying any other generator of the supercon-
formal algebra on the superconformal primaries. For example applying [Pµ,O] = −∂µO
has scaling dimension ∆ + 1. In particular, the superdescendents are those obtained by
applying the supercharge:

O′ = [QI
α,O}. (5.32)

Clearly

∆O′ = ∆O +
1

2
. (5.33)

Superdescendents are conformal primaries as can be easily seen from the superconformal
algebra. In particular note that each superdescendent gives rise to a Verma module and
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each such Verma module is related by supersymmetry transformation. On each such su-
perconformal primary, we construct a tower of descendents and this gives an irreducible
representation of the superconformal algebra. The full spectrum is the direct sum of all
these highest weight representations.

Let us now apply this to N = 4 SYM. We need to identify the superconformal primaries.
Note that the Q-commutator of any field cannot be a superconformal primary since apply-
ing S lowers the scaling dimension by 1/2 and hence the Q-commutator is not annihilated
by S. We now list all the Q-commutators:

{Q,λ} = F+ + [ϕ, ϕ]; [Q,ϕ] = λ

{Q, λ̄} = Dϕ; [Q,F ] = Dλ
(5.34)

Next the superconformal operators cannot be constructed out of only the gauge field as it is
not gauge invariant. Thus the only left option is the scalar fields. Thus all superconformal
primaries are polynomials of the scalar fields. To construct gauge invariant operators, we
need to take trace over the gauge indices which symmetrises the R-symmetry indices. The
simplest operator are the single trace operators of the form

On = str[ϕI1 . . . ϕIn ] (5.35)

where “str” stands for symmetrised trace defined on the generators T a as

str[T a1 . . . T an ] =
∑
σ∈Sn

[T aσ(1) . . . T aσ(n) ]. (5.36)

One then defines the symmetrised trace of ϕI by expanding ϕI = ϕIaT
a. Since the trace of

generators of SU(N) is zero, the simplest single trace operator is the Konishi multiplet

str[ϕIϕI ] = Tr[ϕIϕI ] (sum over I) (5.37)

and the supergravity multiplet

str[ϕIϕJ ] = Tr[ϕIϕJ ]− 1

6
δIJTr[ϕKϕK ] (sum over K). (5.38)

BPS states

The states in the theory are representations of the SU(2,2|4) symmetry group. Thus
the states are labelled by the quantum numbers corresponding to the Poincaré4 group
SO(1, 3)⋉R1,3, the SU(4)R R-symmetry group and the dilatations SO(1, 1). The massless
representations of the Poincaré group are labelled by helicity s+, s−. The quantum number
for dilatations are labeled ∆ ≥ 0. The representations of SU(4) are labelled by the three
Dynkin labels [r1, r2, r3]. The dimension of the representation is given by

dim[r1, r2, r3] =
∏

1≤i≤j≤3

ri − rj + j − i
j − i

. (5.39)

4remember that we are looking at massless representations, which means that translations do not con-
tribute to the labels.
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The conjugate representation of [r1, r2, r3] is denoted by [r1, r2, r3]
∗ and given by

[r1, r2, r3]
∗ = [r3, r2, r1]. (5.40)

Unitarity demands that the conformal dimension be bounded below by the spin quantum
number and also the R-symmetry labels. A careful analysis of the representation labels
based on the su(2, 2|4) algebra gives [4]

(1) ∆ = r1 + r2 + r3

(2) ∆ =
3

2
r1 + r2 +

1

2
r3 ≥ 2 +

1

2
r1 + r2 +

3

2
r3; r1 ≥ r3 + 2

(3) ∆ =
1

2
r1 + r2 +

3

2
r3 ≥ 2 +

3

2
r1 + r2 +

1

2
r3; r3 ≥ r1 + 2

(4) ∆ ≥ Max

[
2 +

3

2
r1 + r2 +

1

2
r3; 2 +

1

2
r1 + r2 +

3

2
r3

] (5.41)

Note that (2) and (3) are conjugates of each other. (4) is a kind of BPS bound which when
saturated results in atleast one of the supercharges to commute with the corresponding
primary operator and hence these primary operators do not create new states by acting
on the vacuum in the theory and the multiplet is shortened. The multiplets we get when
the BPS bound is saturated is called the BPS-multiplet in analogy to the supersymmetric
BPS-multiplits discussed above. The first three cases are discrete series of representations
and are clearly the BPS-multiplets. The importance of BPS-muliplets lies in the fact that
the conformal dimension is given exactly in terms of SU(4) labels and hence group theoretic
reasoning demands that the conformal dimension are protected again quantum corrections,
that is the conformal dimensions of the BPS primary operators are not renormalised. This
is important because we will see later that the AdS/CFT correspondence related the weak
coupling limit of Type IIB string theory (which is a supergravity theory and calulations
are easier to perform here) to the strong coupling limit of N = 4 SYM (and hence it is
hard to do perturbative calculations here). Since the conformal dimensions of BPS primary
operators are non perturbative objects, they have an exact observable in the string theory.

The operators corresponding to (4) are non-BPS primary operators and the conformal
dimensions of non-BPS operators are unprotected. We now list the quantum numbers of
the BPS operators in a table. #Q represents the number of supercharges that commute
with the operator.

Operator type #Q spin range SU(4)R primary dimension ∆

identity 16 0 [0, 0, 0] 0
1/2BPS 8 2 [0, k, 0], k ≥ 2 k

1/4BPS 4 3 [ℓ, k, ℓ], ℓ ≥ 1 k + 2ℓ

1/8BPS 2 7/2 [ℓ, k, ℓ+ 2m] k + 2ℓ+ 3m,m ≥ 1

non-BPS 0 4 any unprotected

Table 1. BPS and non-BPS primary operators
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5.2 Type IIB String Theory and Supergravity

We now discuss the other side of the AdS/CFT corresponding, namely the Type IIB string
theory on AdS5 × S5. We begin by a general discussion of string theories and superstring
theories.

5.2.1 Bosonic String Theory

String theory is a theory of strings – a one dimensional object. As usual we start with
an action, which in analogy with the action for a point particle, is the area of the surface
called the worldsheet traced by the string. To write an expression for the action, we need to
embed the string in a D-dimensional manifoldM called the target space via an embedding
X : R× [0, ℓ] −→M where L is the length of the string. Parameterising the worldsheet by
σα ≡ (τ, σ) ≡ σ the embedding in the target space is given by coordinates Xµ(τ, σ). The
string action, called the Nambu-Goto action is given by

SNG = − 1

2πα′

∫
M
dσdτ

√
−det (∂αXµ∂βXµ), (5.42)

where M is the surface traced by the string, α′ is called the Regge slope. If we denote the
intrinsic metric on the worldsheet by

hαβ = ∂αX
µ∂βXµ. (5.43)

The action can then be written as

SNG = − 1

2πα′

∫
M
dσdτLNG, LNG = [−det(hαβ)]

1
2 . (5.44)

This action is not very easy to work with. We work with the Polyakov action which can be
shown to be equivalent to the Nambu-Goto action. The Polyakov action is given by

SP = − 1

4πα′

∫
M
dσdτ

√
−ggαβ∂αXµ∂βXµ, (5.45)

where g = det(gαβ) is a general worldsheet metric. Now the metric on the worldsheet is
dynamical, so the Polyakov action can be considered as a bunch of scalars coupled to 2d
gravity. This action possesses three different symmetries:

1. Reparametrization invariance: the parameters transform as σα −→ σ̃α = σ̃α(σ). The
scalar fields Xµ transform as

Xµ(σ, τ) −→ X̃µ (σ̃α) = Xµ (σα)

and the worldsheet metric gαβ transforms in the usual way

gαβ −→ g̃αβ (σ̃
α) =

∂σγ

∂σ̃α
∂σδ

∂σ̃β
gγδ(σ).

2. Poincaré Invariance: this is a global symmetry of the action.

Xµ −→ X̃µ = Λµ
νX

ν + ξµ

for some constant ξµ ∈ RD−1,1 and Λµ
ν ∈ SO(D − 1, 1).
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3. Weyl Invariance: there is another gauge invariance called Weyl symmetry. Under this
Xµ −→ Xµ and the metric transforms as

gαβ −→ g̃αβ = Ω2(σ)gαβ

or infinitesimally if Ω2(σ) = e2ϕ(σ) then

δgαβ = 2ϕ(σ)gαβ.

This only works when the worldsheet is 2d.

Let us vary the action with respect to Xµ with δXµ (σ, τ0) = δXµ (σ, τ1) = 0 for some
initial and final value τ0, τ1 respectively of the parameter τ. We get

δSP =
1

2πα′

τ1∫
τ0

dτ

ℓ∫
0

dσ (∂α∂
αXµ) δXµ +

1

2πα′

ℓ∫
0

dσ (∂τXµ) δXµ

∣∣∣∣τ1
τ0︸ ︷︷ ︸

= 0 as δXµ (σ, τ0) = δXµ (σ, τ1) = 0

+
1

2πα′

τ1∫
τ0

dτ (∂σXµδXµ)

∣∣∣∣ℓ
0︸ ︷︷ ︸

surface term

.

(5.46)

To get the equations of motion, we need the surface term to go to zero. Physically we
distinguish between two cases - the closed string and the open string. For the closed string
Xµ(σ+ ℓ, τ) = Xµ(σ, τ) and the surface term vanishes. For the open string, we can impose
two different boundary conditions:

1. Dirichlet boundary condition: δXµ = 0 at σ = 0, ℓ.

2. Neumann boundary condition: ∂σXµ = 0 at σ = 0, ℓ.

The equations of motion are
∂α∂

αXµ = 0 (5.47)

which is the wave equation. We will briefly recall the quantisation of closed an open strings
and discuss the derivation of the critical dimension.

Closed String

Before we solve the equation of motion, we need to impose the constraint obtained from the
equation of motion of gαβ since it was an auxiliary field. To simplify the constaint, we can
use the reparametrization invariance and Weyl symmetry of the action to set gαβ = ηαβ–
this is called the conformal gauge. The equation of motion for gαβ is

∂αX
µ∂βXµ =

1

2
gαβ∂cX

µ∂cXµ.
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Also the energy momentum tensor for the Polyakov action is given by

Tαβ = −4πα′ 1√
−g

δS

δgαβ
= ∂αX

µ∂βXµ −
1

2
gαβ∂cX

µ∂cXµ.

So the constraint is

Tαβ|gαβ=ηαβ
= ∂αX

µ∂βXµ −
1

2
ηαβ∂cX

µ∂cXµ = 0. (5.48)

So we have to impose two constraints

ẊµX ′
µ = 0,

1

2

(
Ẋ2 +X ′2

)
= 0, (5.49)

where the dot is derivative with respect to τ and prime is derivative with respect to σ. So
the equation of motion is a wave equation along with the two constraints. The solution to
the equations of motion is given by

Xµ(σ, τ) = Xµ
L +Xµ

R (5.50)

where5

Xµ
L

(
σ+
)
=
xµ

2
+

1

2
α′pµσ+ + i

√
α′

2

∑
n̸=0

1

n
α̃µ
ne

−inσ+

Xµ
R

(
σ−
)
=
xµ

2
+

1

2
α′pµσ− + i

√
α′

2

∑
n̸=0

1

n
αµ
ne

−inσ−
,

(5.51)

where σ± = τ±σ. The functions Xµ
L are called left movers and Xµ

R are called right movers.
Reality of Xµ implies that

(αµ
n)

⋆ = αµ
−n and (α̃µ

n)
⋆ = αµ

−n ∀n ∈ Z\{0}.

Imposing the constraints gives

Ln :=
1

2

∑
k∈Z

αk ·αn−k = 0. (5.52)

and L̃n = 0 for all n ∈ Z where L̃n is defined with α̃ analogous to Ln. Here αµ
0 =

√
α′/2pµ.

To quantise the closed string, we promote the modes αµ
n and α̃µ

n to operators and impose

[xµ, pν ] = iηµν

[αµ
n, α

ν
m] = mηµνδm+n,0 = [α̃µ

m, α̃
ν
n]

(5.53)

The Ln’s of (5.52) are now operators but to define L0, we need to impose normal ordering
on the modes. We put αµ

n, n > 0 to the right of αµ
n, n < 0. The algebra satisfied by Ln

is then the Virasoro algebra given by

[Ln, Lm] = (n−m)Ln+m +
c

12

(
n
(
n2 − 1

))
δm+n,0 (5.54)

5the length of the string has been normalised to 2π.
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and similarly for L̃n. Here c is called the central charge and is related to breaking of Weyl
symmetry in the quantum theory. For D scalar fields c = ηµµ = D. Since this is a gauge
symmetry of the theory, we want this anomaly to cancel in the quantum theory. Indeed in
superstring theory which we will discuss soon, addition of worldsheet fermions contributes
to central charge and the anomaly cancels when D = 10 giving the critical dimension of
the superstring. The ground state of the theory is now defined by

αµ
n|0; pµ⟩ = 0 = α̃µ

n|0; pµ⟩ for µ = 0, 1, . . . , D − 1; n > 0 (5.55)

where pµ is the momentum of string ground state. A general excitation of the string is(
αµ1
−1

)nµ1
(
αµ2
−2

)nµ2 · · ·
(
α̃ν1
−1

)nν1
(
α̃ν2
−2

)nν2 · · · |0; pµ⟩.

We now have negative-norm states in the theory. Indeed since η00 = −1, it can easily
be checked that for |ψ⟩ = α0

−m |0; pµ⟩, ⟨ψ|ψ⟩ = −m < 0. It turns out that these states
decouple from the theory if we choose D = 26 – the critical dimension of bosonic string (see
[8] for proof). This is the covariant quantisation since it is manifestly Lorentz invariant.
There is another quantisation scheme called the lightcone quantisation, which breaks Lorentz
invariance and avoids negative norm states. But at the end when we enforce Lorentz
invariance, we need to fix D = 26. For more details see [8]. It turns out that the string
ground state is tachyonic – a red signal. The first excited state is massless and the particle
content is

1. gµν(X) : the traceless symmetric tensor field which we will identify with graviton.

2. Bµν(X) : the antisymmetric tensor field. This is sometimes called the Kalb-Ramond
field.

3. Φ(X) : the trace part of the tensor representations. This scalar field is called the
dilaton.

All higher excited states are massive.

Open Strings and D-branes

The general solution to the wave equation (5.47) remains the same, we need to impose
the boundary conditions to determine the specific form of the solution. In general one can
apply different boundary conditions at the two ends of the open string. For example, one
can have Neumann boundary condition at both ends (NN). Analogously other boundary
conditions can be (DD), (ND) and (DN) where D stands for Dirichlet boundary condition.
Also note that we can differentiate between the boundary conditions in different directions.
For example we can apply NN for 0 ≤ µ ≤ p and DD for p + 1 ≤ µ ≤ D − 1. This means
that

∂σX
a = 0 for a = 0, · · · , p at σ = 0, π

XI(0, τ) = cI , XI(π, τ) = dI for I = p+ 1, · · · , D − 1,
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where we have normlaised the string length to π. This fixes the endpoints of the string
in the D − p − 1 directions and hence is constrained to move in the (p + 1)-dimensional
hypersurface. This hypersurface is usually called a Dp-brane. So a D0-brane is a particle, a
D1-brane is itself a string, a D2-brane is a membrane and so on. In particular if p = D− 1

then we get to NN case which means all space is a D-brane, that is we get space filling
D-brane. Now the quantisation. In covariant quantisation, again a similar analysis as in
closed string quantisation results in D = 26 independent of the boundary condition. The
spectrum depends on the choice of boundary condition. The ground state is tachyonic, first
excited state is massless and all higher excited state is massive. One can show that the
maximum spin at level6 n is n. Thus the first excited states are spin 1 particles which we
can identify with photons.

Open String Closed String
Ground state Tachyonic Tachyonic
First excited state Aµ gµν , Bµν ,Φ

It is worthwhile to note that the mass of the string excitations are inversely proportional
to α′ and hence in the low energy limit α′ → 0, the mass of higher exited states go to infinity.

We now quickly review how gauge theories arise on the worldvolume of D-branes.

One Dp Brane: the boundary condition is

Xµ(0, τ) = cI = Xµ(π, τ) µ = p+ 1, . . . , D − 1.

Thus the ends of the string are constrained to lie on one Dp brane. The ground state is
now defined by

αi
n |0; pµ⟩ = 0, n > 0, i = 1, 2, · · · p− 1, p+ 1, · · · , D − 1.

Note that the string momentum pµ is actually only in p + 1 directions. The SO(1, D − 1)

Lorentz group is broken into SO(1, p) × SO(D − P − 1). As the first excited state has
maximum spin 1, these states represent gauge fields. We introduce a gauge field Ai, i =

0, . . . , p and its quanta represents spin 1 photons. The other oscillators are

αI
−1 |0; pµ⟩ , I = p+ 1, . . . , D − 1.

These transform as scalar representations of SO(1, p) and hence we introduce D − p − 1

scalar fields ϕI . Although ϕI transform as scalars under the SO(1, p) Lorentz group of the
Dp-brane they transform as vectors as representations of the SO(D−p−1) rotation group.
This appears as a global symmetry of the brane world volume. One can also consider ϕI

as the Goldstone Bosons associated to the spontaneously broken translational symmetryor
as fluctuations of the D-brane itself. this indicates that the D-branes itself are dynamical
objects in string theory.

6excited states with n oscillators acting on the ground state
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Two Dp-branes: This means that the string is stretched between two branes. The bound-
ary condition is Xµ(0, σ) = Xµ(π, σ), µ = p+ 1, · · · , D − 1. One can show that the first
excited states αi

−1|0, pi⟩ in this case are no longer massless.

In general we can stack N such Dp-branes on top of each other and denote the massless
vector excitation as

αi
−1|k, ℓ, pi⟩

where k, ℓ are labels which encode the Dp-branes on which the endpoints of the string end.
These are called Chan-Paton labels. The resulting N2 states can be embedded in an N ×N
matrix and expanded in a complete set of N ×N matrices∣∣k, ℓ; pi〉 = λakℓ|a; pi⟩, a ∈

{
1, · · · , N2

}
,

where λakℓ are called Chan-Paton factors. The resulting fields T k
ℓ ,
(
ϕI
)k
ℓ

and (Aa)kℓ can be
fit into Hermitian matrices. The diagonal fields arise from strings ending on same brane. In
this way, (Aa)kℓ can be identified with U(N) Yang-Mills gauge bosons and

(
ϕI
)k
ℓ

transform
in the adjoint representation of U(N).

Low energy effective spacetime action

One can consider the string propagating in the background of its own massless fields. For
the closed string, this is achieved by coupling the string with the graviton gµν(X), the
Kalb-Ramond field Bµν and the dilaton. The action can then be written as

S = − 1

4πα′

∫
d2σ
√
−hhαβ∂αXµ∂βX

νgµν(X)

− 1

4πα′

∫
d2σ

(
ϵαβ∂αX

µ∂βX
νBµν(X)−

√
−hα′R(2)Φ(X)

)
(5.56)

where R(2) is the Ricci scalar of the graviton gµν and ϵαβ is the Levi-Civita symbol. This
is known as the nonlinear σ-model. We want to retain the reparametrization and Weyl
symmetry of the Polyakov action. This can be made sure by looking at the renormalisation
group beta functions for the couplings gµν , Bµν and Φ. To first order in α′ we get

β(g)µν = α′
(
Rµν + 2∇µ∇νΦ−

1

4
HµλρH

λρ
ν

)
β(B)
µν = α′

(
−1

2
∇λHλµν +∇λΦHλµν

)
β(Φ) = α′

(
−1

2
∇2Φ+∇µΦ∇µΦ− 1

24
HµνλH

µνλ

) (5.57)

where H = dB is a 3-form field strength and Rµν is the Ricci tensor for gµν . Indeed in the
low energy limit, only first order contributions are relevant. We see that the vanishing of
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the β-functions can be encoded in the equations of motion of a spacetime action, called the
low energy spacetime action of the closed string, and given by

Seff. =

∫
d26x

√
−det ge−2Φ

(
R− 1

12
HµνλH

µνλ + 4∇µΦ∇µΦ

)
(5.58)

In superstring theory, this method of deriving the spacetime action gives rise to supergravity
theory as the low energy approximation of string theory.

5.2.2 Superstring theory and Supergravity

We now briefly discuss superstring theory. The bosonic string theory described in previous
section is inherently incomplete because it does not contain fermions. Moreover, it is
fraught with problems like the tachyonic ground state and the critical dimension being
26 which is far from 4 which we live in. So we introduce fermions in the theory. There
are two equivalent formalisms of introducing fermions: the Green-Schwartz formalism (GS)
where we introduce spacetime fermions in the target space and the Ramond-Neveu-Schwartz
formalism (RNS) where we introduce worldsheet fermions on the 2d worldsheet. We follow
the RNS formalism. The action is modified to

S = − 1

4πα′

∫
M
dσdτ

√
−g∂αXµ∂αXµ + iΨ̄µΓα∂αΨµ (5.59)

where Γα are the 2d gamma matrices satisfying

{Γα,Γβ} = 2ηαβ (5.60)

where Ψ̄µ = iΨ†Γ0. One can choose a simple representation of the gamma matrices such
that when the fermion is decomposed into Weyl spinors Ψµ ≡ (ψµ

+, ψ
µ
−), the fermionic action

takes the form
SΨ = − 1

2πα′

∫
d2σ

(
ψµ
−∂+ψµ− + ψµ

+∂−ψµ+

)
. (5.61)

The equations of motion are
∂−ψ

µ
+ = ∂+ψ

µ
− = 0. (5.62)

But one needs to make sure that the boundary term vanishes while deriving this equation
of motion. Indeed the boundary term has the form:

δSΨ|boundary ∝
∫
dτ
(
ψµ
−δψ−µ − ψµ

+δψ+µ

)∣∣∣∣σ=π

σ=0

(5.63)

This leads us to the following boundary conditions for open superstrings:

1. Ramond Sector (R): ψµ
+(τ, π) = +ψµ

−(τ, π).

2. Neveu-Schwarz Sector (NS): ψµ
+(τ, π) = −ψ

µ
−(τ, π).

We could have chosen ψµ
+(τ, 0) = ±ψ

µ
−(τ, 0), but these are redundant in the sense that they

are not physically different, and so one imposes ψµ
+(τ, 0) = +ψµ

−(τ, 0) by convention.
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For the closed superstring, the boundary term vanishes because from the contributions
of both ψµ

±δψ±µ

∣∣
σ=π

and ψµ
±δψ±µ

∣∣
σ=0

. There are 4 different ways of doing this:

ψµ
+(τ, σ) = ±ψ

µ
+(τ, σ + π)

ψµ
−(τ, σ) = ±ψ

µ
−(τ, σ + π).

We thus have 4 sectors of the closed superstring theory: R-R, R-NS, NS-R, and NS-NS,
where R refers to periodic and NS to anti-periodic boundary conditions.

The theory is quantised as usual by promoting the modes of the solutions of equations
of motion to operators and imposing (anti)commutation relations. The Virasoro algebra is
now extended to the superconformal algebra and the negative norm states are removed from
the theory using this extended algebra and unitarity. The theory now has different vacuum
for NS and R sectors, the vacuum of NS sector is a tachyon while the vacuum of the R
sector is a spacetime spinor. Thus all spinors in the target space arise from the worldsheet
spinor.

Since a fermion contributes to central charge 1
2 , the total centralc ahrge with D bosons

Xµ and D fermions Ψµ is D(1 + 1
2). Next there are two different types of ghosts in the

theory, the bc ghost coming from the gauge fixing of reparametrization invariance and the
βγ system coming from the definition of the BRST current. Both the ghosts contribute 11
to the central charge. Moreover the consistency of the theory requires the central charge to
be c = 26− 11 = 15. Thus we must have

D(1 +
1

2
) = 15 =⇒ D = 10. (5.64)

Thus the critical dimension of the superstring theories is 10.

Now in this superconformal field theory, the OPE of NS sector with the R sector has square
root singularity and hence are nonlocal. Thus to make sense of the theory, we need to
project to a subset of operators in the theory which are pairwise local. This process of
projection is called the GSO projection. GSO projection projects out the NS vacuum and
also one of the chiralities of the R vacuum. For the closed string, The NS-NS and R-R
sectors have integral spin while the NS-R and R-NS sectors have half-integral spin. Also
for the closed string, there are two inequivalent choices of the R vacuum giving rise to two
string theories, the Type IIA and Type IIB. We will focus on the Type IIB. The massless
spectrum of Type IIB is shown in table below.

RR A0, A2, A
+
4

R-NS Ψ1
+, χ

1
−

NS-R Ψ2
+, χ

2
−

NS-NS Φ, B2, gµν

Table 2. Massless spectrum of Type IIB string theory
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where An is an n-form (and A+
4 is self-dual), ΨI

+(I = 1, 2) are right-handed dilatini, χI
−

(I = 1, 2) are left-handed gravitini, and the NS-NS sector is just the massless sector of the
closed bosonic string spectrum. We see that the theory is chiral since the 2 dilatini and the
2 gravitini have the same chirality.

Type IIB superstring theory also has a low energy effective spacetime action and remark-
ably it turns out to be a theory of supergravity in D = 10 with N = 2 supersymmetry.
Moreover this the maximal supersymmetry with 32 supercharges one can have in D = 10

supersymmetric theories containing gravitons. The full action cannot be written because
of the self-dual form A+

4 but once can write an action with A5 = dA4 and other fields and
then impose ∗F5 = F5. The bosonic part of the action is

SType IIB =
1

4κ2

∫
d10x

√
−det ge−2Φ

(
2R+ 8∇µΦ∇µΦ− |H3|2

)
− 1

4κ2

∫
d10x

[√
−det g

(
|F1|2 + |F̃3|2 +

1

2
|F̃5|2

)
+A+

4 ∧H3 ∧ F3

]
+ Sfermions

(5.65)

where κ is the coupling constant, Fn ≡ dAn−1 is the n-form field-strength, H3 is the 3-form
H3 ≡ dB2, F̃3 ≡ F3 −A0H3 and F̃5 ≡ F5 − 1

2A2 ∧H3 +
1
2B2 ∧ F3 and the modulus squared

is defined as
|Fn|2 = gµ1ν1 . . . gµnνnFµ1...µnFν1...νn . (5.66)

The Type IIB action exhibits a noncompact SL(2,R) symmetry. To describe it, transform
the metric to the Einstein frame as follows:

gµν → e−Φ/2gµν . (5.67)

Combining the axion A0 and the dilaton into a complex scalar τ = A0+ie
−Φ, the symmetry

transformation is given by:

τ → aτ + b

cτ + d
,

(
a b

c d

)
∈ SL(2,R). (5.68)

In the quantum theory there is a quantization condition τ ∼ τ +1, and thus the symmetry
group reduces to the subgroup SL(2,Z).

Branes in supergravity and superstring theory

We now introduce D-branes in supergravity. If we have a p + 1 form Ap+1, then we can
natually couple it to a (p + 1)-dimensional hypersurface Σp+1 of the spacetime via some
coupling Tp+1. Indeed we can define the action of the coupling as

Sp+1 = Tp+1

∫
Σp+1

Ap+1. (5.69)

The action is clearly diffeomorphism invariant. Moreover this action is invariant under the
gauge transformation

Ap+1 −→ Ap+1 + dρp (5.70)
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where ρp is a p-form. The field strength of the (p+1)-form is the (p+2)-form Fp+2 = dAp+1.

Solutions to supergravity with nontrivial Ap+1 charge are referred to as p-branes, after the
space dimension of their geometry.

Each Ap+1 gauge field has a magnetic dual Amagn
D−3−p which is a differential form field of

rank D − 3− p, whose field strength is related to that of Ap+1 by Poincaré duality:

dAmagn
D−3−p ≡ ∗dAp+1 (5.71)

Thus we see that each p-brane also has a magnetic dual, which is a (D − 4− p)-brane and
which now couples to the field Amagn

D−3−p. It is now clear that the p-branes in a supergravity
theory depends on the form fields in the theory. For example, the low energy limit of Type
IIB superstring theory, which is a supergravity theory in 10 spacetime dimensions, has
the Kalb-Ramond field and hence it will have branes. The list of all branes in Type IIB
superstring theory is listed in table below.

Brane p-form Magnetic Dual
D(−1) τ = A0 + ie−Φ D7

F1 B2 NS5
D1 A2 D5
D3 A+

4 D3

Table 3. Branes in Type IIB superstring theory

In the above table, the terminology used is the following:

1. The brane corresponding to Ap+1-form is called a Dp-brane in analogy to the open
string theory. It turns out that these Dp-branes are intimately related to the open
string theory Dp-branes in the weak string coupling limit and that is why we use the
same terminology for both of them. We refer the reader to [3] for details.

2. D(−1) branes are called instantons since they are localised in space as well as time.

3. the 1-brane which corresponds to the 2-form NS-NS form field Bµν is called the
fundamental string F1. The NS in NS5 simply means that Bµν is an NS-NS field.

We will focus on D3 branes since these are self-dual and important in AdS/CFT correspon-
dence. Finally note that once we identify the D-branes in supergravity with the D-branes
in open string theory, SU(N) gauge theories can be understood as the spectrum of stacks
of N D-branes as explained at the end of Subsection 5.2.1. Moreover, it turns out that
each brane solution to supergravity breaks half of the supersymmetry and hence one can
recover N = 4 super Yang-Mills with gauge group SU(N) from the spectrum of a stack of
N D-branes in Type IIB superstring theory.
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5.3 The Decoupling Argument and the Statement of the Correspondence

The decoupling argument due to Maldacena [7] is based on the two ways of interpretating
D-branes in Type IIB superstring theory. The first interpretation is the one where D-
branes are described as hypersurfaces in spacetime on which the ends of an open string
are constrained by boundary conditions. The second interpretation is as solutions to the
supergravity field equations in the low energy limits of the string theory. We begin by
discussion these interpretations separately.

5.3.1 D-Branes as dynamical walls with open string excitations

As was indicated in Subsection 5.2.1, D-branes are dynamical objects and hence are de-
scribed by an action Sbrane. Now if we consider N D3 branes stacked over each other, then
since D3 branes are 4 dimensional, as discussed before, we get 4d N = 4 super Yang-Mills
theory with gauge group SU(N) from Sbrane. The other dynamical aspects of the theory
are the actions Sbulk which is the 10d supergravity theory with massive modes as well and
the interaction between branes and supergravity Sbrane. In the low energy limit α′ → 0, the
interactions vanish since the interaction term couples as Newton’s contant

√
GN ∼ gsα

′2

where gs is the string coupling constant. Thus in the low energy limit the theory decouples
to two theories

(N = 4 SYM in 4d)⊕ (Type IIB Supergravity in 10d). (5.72)

5.3.2 D-Branes as Solutions in Supergravity

We now consider D-branes as solution to the supergravity field equations. In particular, we
consider N D3 branes in supergravity. The gravitational part of the solution is given by [3]

ds2 =
1√

1 + L4

y4

ηµνdx
µdxν +

√
1 +

L4

y4
dy⃗2 (5.73)

where L4 = 4πgsNα
′2, xµ is coordinate on 4d D3-brane worldvolume and y⃗ covers Euclidean

6d space perpendicular to the brane. We need to take L ∼
√
α′(gsN)

1
4 ≫ ls ∼

√
α′ where

ls is the string length. This is because this guarantees that the curvature is large compared
to the string length and hence supergravity description of the string theory is applicable
and useful. But now note that this requires

λ := gsN ≫ 1. (5.74)

Thus this description is in the opposite regime compared to the previous description in
terms of gauge theory. We now consider the Maldacena limit. Writing

dy⃗2 = dy2 + y2dΩ2
5 (5.75)

where dΩ2
5 is the round metric on S5, the near horizon limit of the D3-brane solution (5.73)

is

ds2y→0 =

(
y2

L2
ηµνdx

µdxν +
L2

y2
dy2
)
+ L2dΩ2

5 (5.76)
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This is called the Maldacena limit and was first discussed in [7]. Note that this metric is
exactly the metric on AdS5 × S5 in Poincaré coordinates on the AdS space with radius L
for both AdS and S5. Moreover in the y → ∞ limit the metric (5.73) becomes flat. Thus
the energies at any point and at infinity are related as

E =
1√
−gtt

E∞. (5.77)

In particular, near the brane, we have

E∞ =
y

L
E. (5.78)

Thus for an observer at infinity, there are two decoupled theories:

1. At infintity, the theory is effectively a 10d supergravity since gravity becomes free at
low energies/large distance.

2. Near the brane, the geometry of the background is AdS5 × S5 and the theory is the
full Type IIB string theory.

Thus the theory decouples to

(Type IIB String Theory on AdS5 × S5)⊕ (Type IIB Supergravity in 10d). (5.79)

Thus from (5.72), we can identify

Type IIB String Theory on AdS5 × S5 ∼= N = 4 SYM in 4d. (5.80)

The Precise Statement of the Correspondence is thus:

Type IIB string theory on AdS5 × S5 (both with radius L) with 5-form flux N and string
coupling gs is equivalent/dual to 4-dimensional N = 4 SYM with gauge group SU(N) and
coupling constant gYM , where the couplings are identified as

gs = g2YM ; L4 = 4πgsNα
′2. (5.81)

Several checks have been performed on this correspondence. We refer the reader to [3] and
references therein for the details of the checks.
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