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1 Introduction

The Anti-DeSitter /Conformal field theory correspondence is a duality between a theory of
quantum gravity in AdS space and a conformal field theory on the boundary of AdS space.
This duality is an example of holography, that is equivalence of a theory in d dimensions
with a theory in d — 1 dimensions. The AdS/CFT correspondence originally developed
by Maldacena in [7] posits the equivalence of Type IIB string theory on AdSs x S° and
N = 4 super Yang-Mills in 4 dimensions. This equivalence rests on the dual interpretation



of certain dynamical objects in string theory called D-branes. This is an extremely power-
ful correspondence since as we will see, it related a strongly coupled theory (N = 4 super
Yang-Mills) to a weakly coupled theory (Type IIB string theory on AdSs x S°) and hence
non perturbative calculations can be done using perturbative string theory. Although the
correspondence has not been rigorously proven, substantial amount of evidence has been
demonstrated in favour of the correspondence and hence the AdS/CFT correspndence re-
mains the AdS/CFT conjecture.

In this short review, we discuss this correspndence. We start by discussing aspects of
AdS spaces and conformal field theory. We provide a toy example of the correspondence
using scalar fields coupled to gravity in AdS space and a conformal field theory in Minkowski
space. Finally we discuss the original Maldacena’s proposal of the correspondence.

2 The Anti-deSitter Space
We begin by defining the AdS space.

2.1 Definition of AdSs 1

The easiest way to describe the AdS space is by embedding it in d + 2 dimensional
Minkowski space. Let (Rd’2,nuy) be the d + 2 dimensional Minkowski space with coor-
dinates (11, 7%, X1,...,X4). The metric is

d
ds® = —dT} — dT§ + Y dX7.
=1

We now consider the following function f € C°°(R%?) :
d
FTL T, X, X)) = T2+ T8 =Y X2~ 12,
i=1

where ¢ # 0 is a constant real number. Consider the zero set of this function:

F7H{0}) = {p e R** | f(p) = 0}.
The Jacobian of this function is

of of of  of

o1, 0T, 0X, 0X,

] - [2T1 9Ty —221 - -- —an]

which is 0 only at (0,0,...0) ¢ f~1({0}). Thus f~*({0}) is a regular level set and by Regular
level set theorem, f~1({0}) is a regular submanifold of R%? and dimension d+2—1 = d— 1.
The coordinates on f~1({0}) is given by t,7,601,...,0, 1 with the transformations given by

Ty = \/r24(2cost, Tp=+/r2+2sint

X1 :rcosel, X2=TSiIl(91COS€2, ngrsin91sin92(zost93,...



Clearly
X?2=Y X{=r’and T7+T5=r"+0
(2
So these coordinates automatically satisfy the constraint and we only have d+1 coordinates
to describe f~1({0}) as is appropriate for a d + 1 dimensional space. We now induce
the metric from the ambient Minkowski space to the submanifold f~'({0}) by simply
substituting the above transformations:

.
dT} = ——drcost — /12 + 2 sintdt
! V2 4+ 02

r

dTy = ———drsint + \V/r2 + (2 cos tdt
Vr2 442

dX? = dr® + 12403,

where del_l is the metric on S9!, This is obvious from the fact that the transformation
Xi = X;(r,01,09,...,0,) is simply the generalised spherical polar coordinate transforma-
tion. For example

d=2,d02} =db

d =3, dQ3 = db? + sin Od¢?

and so on. Thus the metric on f~1({0}) is given by

2 2
r
drcost — \/r? + £2sin tdt> — (dr sint + 172 + ¢2 cos tdt>
V12 4 02

+dr® 4+ r?dQ

ds® = —

,
<\/T2+R2

2

= —ﬁalr2 cos® t — (1"2 + 52) sin? tdt? + 2rdr cost sin tdt

r
2
— ﬁdrz sin?t — (7“2 + 62) cos? tdt? — 2rdr costsintdt + dr? + 7“de3,1
,
2

=—(r* + %) dt* + dr® <1 =y R2> + r2dQ3

_ 2 2\ 342 2 2 102

= — (r +/ )dt +dr <r2+€2> +r7dQy_,

d 2
=— (r?+ %) dt* + TTQ +r2dQ3 .
'z
So the metric on f~1({0}) is given by
2 2 2\ 7,2 dr? 2 7092
2

This is the intrinsic metric on f~1({0}) and the coordinates (r,t,0,...,04 1) are called

global coordinates of f~1({0}). Note that there is an identification of ¢ and ¢ + 27. So to
avoid repitition, we must restrict ¢ to [0,27). Clearly this cannot represent physical time
as this restriction means that we can reach the past by going to the future. Thus f~*({0})
naturally has closed timelike curves. This can be overcome by considering the universal



cover of f~1({0}). The space parametrised by (t,7,601,...,0,_1) with t € R with the metric
in (2.1) is the universal cover of AdS4;+1 and this space is called the (d + 1)-dimensional
anti-Desitter space AdSgz11. We write it explicitly below:

The AdSg41 space is defined by the metric

dr?

ds® = — (r* + ?) dt* + +r2d07

+5 (2.2)
re€[0,00), teR,

where d2%_| is the round metric on 891 and ¢ # 0 is the AdS radius.

2.2 Symmetries

The Minkowski space R%? has the isometry group SO(d,2) x R%2. Infact it is one of the
mazximally symmetric spaces. The AdSgy1 is another maximally symmetric space with
isometry group SO(d,2). If is clear that f~1({0}) also has isometry group SO(d,2) since
f remains invariant under such a transformation. But this not clear from the metric on
f~1({0}). On taking the universal cover, the isometry group also becomes the cover of
SO(d,2). Also AdSg.1 is one of the three homogenous and isotropic spaces. By homogenous,
we mean that the isometry group acts transitively on the space and by isotropic we mean
that the isometry group acts on the tangent space transitively fixing the point of tangency.

2.3 Geometry of AdS;.1

To understand the geometry of AdS;11, we make further change of coordinates. Introduce
r = Rtan p with r € [0, 00) so that p € [0,7/2). Then the metric becomes

ds* = (% sec® p (—dt* + dp® + sin® pd23_;)
e Near p =0, secp ~ 1,sin? p ~ p? so
ds? ~ (*(—dt* + dp® + p*dQ5_,)
~—_——
flat metric

So near p = 0 (origin) the AdS metric is flat. Also note that p has finite range.

e Near p= 7§
1

_p.

sinp~1, secpr~ —

o]

The metric becomes
62
Y (—dt* + dp® + dQ5_,) .
9 —P

ds® ~

Upto the divergent scaling factor, the metric in (¢, p) is the 1 + 1 Minkowski metric
along with the (d — 1)-dimensional round metric.



With these two information, we can represent AdS,_1 as a cylinder shown below.

Figure 1. AdS;41 as a cylinder

Note that although the range of p is finite, the radial distance from the origin to the
boundary is

w/2
E/ secp dp = o0.
0

But it turns out that although the boundary is infinitely far away from the origin, the AdS
space behaves as a finite box. To see this, consider a radial null geodesic in AdSS space. Null
geodesics satisfy ds? = 0. Also since we are considering radial null geodesics sz_l = 0.
Thus ds? = 0 implies

dt = +dp.

Thus light ray travels at 45°. Now suppose we send a light ray from origin towards boundary
and place a reflector at the boundary, so that the light ray bounces back and comes to
origin again. From Fig. 2 below it is clear that, the light ray returns back after time 7
(dimensionless). Thus although the radial distance from origin to boundary is oo, AdS
behaves as a finite box.



Figure 2. Null geodesics in AdSg;1

The boundary of AdSg,1 is topologically R x S%~1. We change coordinates so the boundary
looks flat. This is done by introducing the Poincaré coordinates. Introduce the coordinates
y >0 and (¢, 7) € R¥! via:

Xo= L (144 (2 + 7 — 1))

2y
Xd = Eyt
1
Xo-1= g, (1—y? (* =% +17))
X; = lyx;

where (i =1...d — 2) and #* = Zgl:_f z2. One then easily checks that in this coordinate,

the AdS metric takes the form

dQ—ﬁd2 v datdx” 2.3
s—y2y+£2nwxx (2.3)

where z# = (t,#). Substitution u = £2/y we have dy? = ¢*/u*du?® and ¢2/y? = u?/¢? and

we get
2 4 2
dS = ﬁ (du + nw,dx“dx”)

which is the metric in Poincaré coordinates. It is now clear that the AdS metric is confor-
mally equivalent to the Minkowski metric.



2.4 Dynamincs

The AdS4y1 metric g, satisfies Einstein’s equation

1
R, — §Rgu,, = 8nGT,, (2.4)
where d(d— 1)
L, = kel . (d>2).
" Torqrzdm (122)
The constant
A _d(d -1)
167G

is called the cosmological constant. Indeed, the Einstein equation (2.4) can be obtained
from the action

1
Sadgs = ——— [ dz/=g(R+ A).
AdS 167TG/ z/—g(R+ A)
So AdS is a negative cosmological constant solution to Einstein’s equation.

2.5 Quantisation of Scalar field on AdS space
Consider a scalar field ¢ : AdSg;1 — R. The corresponding action is

1

5=3

[ e V=59 9,00,6 + 7.

The equation of motion for ¢ is
O —m2p=0
where

1
O¢ = ——0, (V—=99"8,0) .
¢ \/_—gau( 99" 9, ¢)

Using the AdS metric (2.1), we get

1 9 [ 4400 2 IR 1 o 2, _
D¢rd—1ay~[r 8r<1+e2 +ﬁvsd‘1¢_mat¢_m¢*o’

where ng,l is the Laplacian over S?~!. For example, for d = 3

19 9 1o
2 i : . _—
Vs = Ghg 00 <Sm980) T SinZ6 942

Inductively, one can define V%d,l as:

1 0

2 _ —_
VS ()72 00

0 1

- pyd—2 2

sin @ — —— V3

<( ) 30) T SinZg V5

We now want to find the general solution to the equation of motion. To find the general
solution, we use seperation of variables. To do this, we look at symmetries. Since the metric
has manifest SO(d) symmetry, one factor of the solution is the solution to

—

Va1 Yia(0) = =U(1 +d = 2)Yy(0).



—

where Y] 5 (0) are the spherical harmonics in d dimensions. The time translation symmetry
asks for one factor of e ™*. We keep r-dependence explicit. So the trial solution is

— . —

¢(r,,0) = e Y (0)(r) (2.5)

Plugging in this trial solution, we get

2 d—1 2 2r w? l(l+d-2)
1 " 1 = / _ a2 —0.
(+ )1/1 +[ r <+l2>+l2]w+[r2+l2 72 m”| =0

Near » = 0, the above equation reduces to

d—1 (l+d—2
w”‘f‘ w/_(+2 )w:O

r r

Using the ansatz ¥ = cr®, we get
ala—1)+(d-1a—-I(l+d—-2)=0

whose solutions are a = [, —l — d+ 2. Note that o = —¢ — d+ 2 gives singular solution near
r = 0 and hence we discard it.

Near r = oo, the above equation reduces to

(d+ 1)

l2w// ’(/J/—m2’(/120
Using the ansatz ¢(r) = kr” we get
1 (d+1)5
BB~ 1)+ —m* =0
whase solutions are 41
B——§j: d? 4+ 4m?2i2.

Note that if we choose sign, § > 0 and hence the solution diverges. So the acceptable

—A=8= _d_ ,,/d2+4m2l2

2

Since the differential equation for 1 is a linear second order ordinary differential equation,

solution is

it has two linearly independent solutions say fiand f_. Then ignoring boundary conditions

P(r) = Afy(r) + Bf-(r)

Boundary condition at r = 0 fixes % and boundary condition at r = oo also fixes %. We
now need to make sure that these two conditions match. This is done using adjusting w.
The final result turns out to quantise to be a discrete quantity. To be precise w is restricted
to

wpi =A+1+2n, neNU{0}.



The solution for % is then
d—1

Una(r) = Co(sin p)! (cos p)2 Pa? ">~ (cos 2p) (2.6)

where as before » = tanp, C),; are constants and P,(f"ﬁ)(z) are the Jacobi Polynomaials
given by

n!
and 9F7 are the Hypergeometric functions. The solution to the equation of motion is thus

given by

— —

St (t,7,0) = (1) Y (B) e
and the general solution is

6(t,1,0) = 3 [awsuim (7,0) + 0l S (7, 8)]
n,l,m
We now define an inner product on the space of classical solutions. For any two solutions
g, f to ¢ — m?¢p = 0, define
(9, f) = i/zddxvdetv n* (" Ouf — fOug”)

Here ¥ is a spacelike slice t = ty,7*? is the metric on ¥,n* is the normal to ¥, that is
n® # 0 and n’ = 0 which is also normalised such that that is

gunt'n” = -1 = goo (n0)2 =-1

that is n® = \/—¢%. The inner product then becomes

(9, f) = i/zdd:r\/det*y

1
“Of — foig"). .
— (9"0cf — fOrg") (2.7)

goo

One can show that (g, f) is independent of to and ¥. With this inner product, the constants
Cpy in (2.6) can be chosen so that [2]

(frims farvm) = Opns 1t Oy -
We now perform cannonical quantisation by imposing

[(t, ), 11(t, )] = 6 (7 = ),
where

S oL
M9 = 5@t 9)

This gives us the commutator of oscillators

T _
|:anlﬁ‘27 e Ot O Oy



and other commutators are trivial. Now to define ground state, we need a time coordinate
since the ground state is defined to be the lowest eigenvalue state of the time translation
symmetry generator (the Hamiltonian). We already have a time coordinate and since a7
is the coefficient of e’nt| it annihilates the vacuum and allﬁl creates states. Thus

anlﬁL|0> =0

T
and Ay

particle state with energy wy,; + wp/y.

0) is a two

|0) is a single particle state with energy w,;. The state aLlﬁaiL,l,mJ

Remark 2.1. Although we are calling above states as one, two or multiparticle states but it
is not so since for particle interpretation we need continuous momentum and energy which
is not available here.

Other excited states can be written as

with energy
k
i=1

Note that the generators of manifest SO(d) symmetry and time translation symmetry are
Noether charges of these symmetries which are quadratic in oscillators a and af. After
normal ordering, these generators annihilate the vacuum. The full SO(d,2) invariance of
the vacuum is more involved to prove.

Interactions can be treated perturbatively if the coupling constants are small. There are UV
divergences but we will consider these theories as embedded in some string theory which is
UV finite due to a cutoff.

Other fields like fermions, A, g, can be treated similarly. In particular for A, and g,
one has to take care of gauge freedom and diffeomorphism invariance. For metric, we will
usually take

A
Guv = gw;is + h;u/

where h,,, is a small perturbation around background metric gﬁlﬁis. To do this we expand
the Einstein-Hilbert action in h,, and treat the nonlinear terms as interactions. Later we
will deal with black holes in AdS. We now list the observables in the quantum theory. First
class of observables are the energies. Others are correlation functions.

()= O )

These can be calculated in terms of f!, . and f* . These are also restricted by SO(d, 2)

invariance. We now face a problem. The correlation functions is a function of z;. In
absence of gravity, one can use distances and angles as arguments of functions which are

~10 -



invariant under general coordinate transformation. But in a quantum theory of gravity, the
distances and angles do not have an invariant meaning. So in a quantum theory of gravity,
correlation functions are not good observables. But we can construct observables using
correlation functions. Quantisation does not allow metric to fluctuate near the boundary.
The fluctuations h,,, — 0 near boundary. So if we take r — oo in the correlation functions,

then we get exact observables. So the observables are

e I (I )

where we attached r®i to get a finite number since

—

o(r,t,0;) — r~2f(t,6) as 1 — oo

Note that the observables above are functions of ¢;, 9_; where 9_; are coordinates on S%! and
t; € R. Thus we have observables on the boundary R x Sa=1 of AdSg+1. One can show that

2]

rli—>Holo e <¢(T’ t,0)¢ (r, t, 97>> > <cos (t— t%) — cos a)A (28)

where « is the geodesic distance between 6 and and ' on S, But there is another issue.
Under a general SO(d, 2) transformation

—

r— F(t,0)r

—

where F(t,0) is some function. Thus the boundary correlation functions transform as

Jim <H riig; (ﬂfz‘)> = (H F(t79)Ai> lim <H r&g; (l’z‘)> :
1 7 7
We will discuss the implications of this later.

3 Conformal Field Theory

We will consider CFT in fixed background geometry without gravity. The background

metric is not necessarily flat.

3.1 General Aspects of CFT
CFT is an ordinary QFT with the property that

Ty (x)g"" () = 0.

where T}, is the stress-energy tensor. That is the stress tensor is traceless. This is an
operator statement which means this is required inside a correlation function. In a simplistic
view of a CFT, suppose that the tracelessness of the stress tensor holds without the use of

equation of motion. The stress tensor is given by

08

Ty 759’“’

— 11 —



where S is the action of the theory. Suppose

2Q(x)

G — Guv + 59#:/ =€ Guv

where §(z) is an infinitesimal function. Then it is easy to see that g"*T},, = 0 is equivalent
2Q(x)
[y

The correlation functions are invariant under conformal transformations

<H O; (l‘z‘)> = <H O; ($z’)>
i g i 22 g,,

But in general, the stress tensor is not traceless at quantum level. Several subtle issues may

to the action S being invariant under g, (z) — e

g

arise. For one example, suppose T},,g"" = 0 after using equation of motion. Then the trace
must be proportional to the equations of motion

Y 08
Twg" =3 Ci({6:}) =
Z. 56
where ¢; are the fields of the theory. Note that under

¢i — ¢ + NC; ({64})
where N is some constant,

) )
08 = Z 57%5@ = NZCi ({9i}) 50
= NT,,g"".

Thus upon using equations of motion, S is invariant under

G — 62Q(m)gW and ¢; — ¢ + NC; ({6i})

<H(9§ (mi)> = <H O; (ffi)>
i e2e) g, ; g

Q(x)

Thus in general

v

where O] are transformed operator under g,, — e? Juv- So the operators need to be

transformed. Another issue is 7),,¢g"” = 0 may hold only in flat background. This is called
the conformal anomaly. In general

T,,g"" o< terms involving Riemann tensor.

For example in 2d, it is proportional to Ricci scalar. In general

<H 0 (xz)> = <H O; (xz)> exp[A(g, Q)]
i e2(2) g, ( g

g

~12 -



where the function A depends on terms appearing in 7),,g*”. There are some special kind of
operators called conformal primaries. Operators O; are called conformal primary operators
of conformal dimension A; if

o)
i 29(x)

Other operators which do not transform in this specific way are called secondary oper-

Juv Guv

ators. Another important feature of a CFT is the state-operator correspondence. The
state-operator correspondence asserts that there is a one-to-one correspondence between
states of the theory and local operators. Thus we can use the operator algebra of the
theory or the Hilbert space interchangeably. This will have implications in the AdS/CFT
correspondence. In general, a classical field theory is conformally invariant if the action
has no dimensionful couplings, since dimensionful couplings set a scale in the theory which
breaks the scale invariance and hence breaking the conformal invariance. At the quantum
level, things are more complicated. Due to loop corrections, the conformal invariance may
be broken and the stress tensor may not remain traceless at the quantum level as dis-
cussed above. Indeed, for a theory to be conformally invariant, a necessary condition is the
vanishing of the renormalisation group beta functions for every coupling g:

_ . 99
59(/15) = MST,LLS'

3.2 CFT with flat Minkowski background

(3.1) is a relation between QFT in two different backgrounds. We want to see if we can get
relations in same background. To proceed, we start with the flat metric g,, = 7,,. Under
a general coordinate transformation

at — fH (x’)

dx® 0z ,
M = G g 108 = I

(o)

where we are considering scalar operators O; so that they do not change. Now under

The correlators change as

v

= <H O; (””;)>g, (32)

conformal transformations
2Q(x)

/o
g/ﬂ/ =€ 77#1/

(o)

R.H.S of (3.2) becomes

) N

~13 -



If in addition, the theory is a CF'T,

(Motn)  =en(-xase) (Tow)

For flat space, the independent conformal transformations are

Nuv

1. Translations: z# — a* + a*

2. Lorentz transformation: z# — A", z¥
3. Scaling: z# — A\z#

4. Special Conformal transforamtions:

M 4 atx?
v 3.3
v 1+2a-z+ a?x? (3.3)

Also the algebra is so(d, 2). Combining (3.2) and (3.1), we get

(o) =en(Sa060) (TTo) 5

Nuv Nuv

For example, consider 2'* = Az for some constant A. Then

Guv = )\_277w/

Thus (3.4) gives
( Nuv @ Nuv

This fixes the two point function up to a constant. Poincaré invariance says that

(0 (21) O (22)) = f (@1 —22)°) (3.6)

where f is some function. Then (3.5) gives

f <)\2 (z1 — :E2)2) =\"287 ((xl - 332)2) .

This implies
C
Fn o) = o s

(1 — 22

where C' is some constant.

Remark 3.1. Although we did not check the tranformation of correlation function under
special conformal transformation, one can show that SCT constrains the conformal weights
of the two operators in the 2-point function to be same.

— 14 —



4 The AdS;,/CFT,; Correspondence

Before we rigorously state the AdS/CFT conjecture, let us explore the examples we con-
sidered in Subsections 2.5 and 3.2, namely a scalar field with dynamical gravity in AdSg11
space and a CFT with flat Minkowski space background.

4.1 Scalar Field in AdS;;; space and CFT, in flat Minkowski space

We start with the CFT correlator (3.6). One can make a Wick rotation t; — iz9,ty — iz
to get
2 L 5
(21— 22)% = (29 — 29)" + (&1 — 2)?
since the Minkowski metric changes to Euclidean metric upon Wick rotation. The 2-point
correlator has the form

We change to polar coordinates

2" = pcosf!
z! = psin 6! cos 62
22 = psin ' sin 62 cos 6°
and so on. The metric is
ds® = dp® + p*dQ3%_,
We use the SO(d) rotation symmetry of the metric to set

Tl = (pl,0,0,...O)
Ty = (pg,@%,o,...())
Then ) )
(x1 — :@)2 = (p1 — P9 COS 9%) + (pg sineé)
= pi + p3 — 2p1p2 cos b5.

Note that 6 can be interpreted as the geodesic seperation of 21 and x5 on Sa=1 (see Figure
3 below). The 2-point correlator becomes

C

(O(21) O(22)) =
(03 + 3 — 2p1p2 cos 03)°

We now change coordinates to

keeping other variables same. Then

ds* = 7 (dr* + dQj_,)
e e —

metric on RxSd—1

~15 —



Figure 3. 0} as the geodesic distance between x! and 2% on S9!

By (3.2) we have
C

A
(€™ 4 €272 — 2em1+72 cos 6))

<O (1’1) @ ('CC?))([RXSd*l)eQT =

Then using (3.4) we get

Ce(Tl+T2)A
(O (21) O (22)) gy gi-1 =

A
(€™ 4 €27 — 2em1+72 cos 63)
C

24 (cosh (11 — 72) — cos 9%)A

We now again analytically continue to complex 7 and evaluate at 7 = it to get to Minkowski

metric. We get
Cl

(cos (t1 — t2) — cos Oé)A

(O (21) O (22))pyga-1 =

This is exactly the same as the boundary two point correlator in (2.8) of a scalar field in
AdS space upto a constant. We make a few remarks on this observation.

Remark 4.1. We make a few remarks about this example.

1. Here we see the first glimpse of AdS/CFT correspondence. Recall that the boundary
of AdSgy; has the topology of R x S%~! and hence we say that quantum theory with
gravity in the bulk of AdSg11 is “equivalent” to a CFT without gravity on the boundary.
We will make this precise later.

2. Clearly, by equivalence we mean that all correlators in the two theories match. Usually
one lists all boundary correlators of quantum gravity in AdS and conjectures that it
constitutes a CFT on the boundary. Also note that the A and coefficients in correlator
have to match in the two theories.

~16 —
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3. Roughly, we see that scalar primary operators O(t, ¥) is related to scalar field ¢(t,r, 0)
as
O(t, ) = lim r2¢(t,r,0)
Also since every CF'T has a stress tensor 7),, and every quantum gravity has a graviton
9uv, thus
Ty < Guuv-

4. AdS/CFT correspondence also conjectures that the Hilbert space of quantum gravity
+ matter on AdS space is isomorphic to the Hilbert space of the CF'T on the boundary.
Thus in continuation to above point, by state-operator correspondence in CFT, all
local operators in the CFT correspond to some state in the AdS theory. In the
particular example of scalar field in AdS, the single particle states

aLWL\O>, with energy A + 1+ 2n

corresponds to the secondary operators

—

3 “ .. A
Tlgrolo alil (9Mk7’ ¢(T,t, )7
where the derivatives are along ¢ and 0 and k = [+ 2n. The permutations of these
derivatives gives all single particle states in AdS with [ 4 2n = k.

5. The double particle states

aleaL'z'm' 0)

for a free scalar field in AdS has energy A + 1+ 2n + A + 1’ + 2n/. But note that this
relation is only true in free scalar field theory in AdS, once we add interactions, the
this does not hold true. But physically, if we take large radius limit of AdS taking
¢ to be large, this relation becomes exact even in interacting theory. Thus we need
to identify a parameter in the corresponding CFT which corresponds to this “large £
limit” of the AdS theory and then we can check if there are local operators in the CFT
whose conformal dimension is A +1+2n+ A+1"42n/ in the relavant limit. One such
example which we will explore in detail is the Type IIB string theory in AdSs x S° and
N = 4 super Yang-Mills in 4d with SU(NV) gauge group. In this correspondence, the
large ¢ limit corresponds to the large N limit on the CFT side and there are indeed
local operators whose conformal dimensions are the sum of conformal dimensions of
other local operators.

6. Note that in the above example, we only need the boundary of the quantum gravity
background space to have the geometry of R x S%~1. But this can be achieved by
allowing more general background spaces for the quantum gravity theory. Indeed,
to get interesting examples of the correspondence, we allow for background metrics
which approach the AdS metric near the boundary in a very specific sense [5]. Such
spaces are called asymptotically AdS spaces. One can be more general by allowing the
background to be asymptotically AdSgy1 X M where M is some compact manifold
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whose volume remains finite as the AdS radius r — oco. In this case, the correspon-
dence works as follows: we start with scalar fields! ¢ : AdSy.; x M — R. Let 2,y
be the coordinates on AdSy,1 and M respectively. Then we can expand the field in
terms of some basis functions {f,(y)}:

(b(xay) - Z¢a($)fa(y)- (4'1)

Now ¢, are scalar field on AdS;11 and we can again proceed as above.

4.2 Precise statement of the correspondence

We now state the AdS/CFT conjecture:

Conjecture 1. Any conformal field theory on R x S is equivalent to a theory of quantum
gravity in asymptotically AdSg41 X M where M is some (possibly trivial) compact manifold.

This correspondence raises immediate questions.
Question 4.1. What is the map between the observables on the two sides?

The answer to this question is called the dictionary. We still do not know the entire
dictionary but many important entries of this dictionary have been worked out. Firstly, the
dictionary means that we have a map between the Hilbert spaces of the quantum gravity
theory and the CFT:

P %ds — %CFT (4.2)

Next we must have that the unitary operators on the Hilbert space representing the sym-
metries of both the theories must commute with &:

Po UAdS - UCFT od. (43)

A solid evidence for why this may be true is the fact that the group of isometries of the
AdS441 is SO(d, 2) which is also the conformal group in d dimensions as observed above.

5 The Correspondence of Type IIB String Theory on AdS; x S° with
N = 4 Super Yang-Mills in 4d

We will now present a concrete example of the AdS/CFT correspondence which appeared
in the original paper of Maldacena in this subject [7]. We begin by reviewing the N = 4
Super-Yang Mills (SYM) theory.

5.1 N =4 SYM Theory in 4d

We first quickly review the supersymmetry conventions and set up the stage to discuss the
theory.

Lone can also consider complex scalar fields.
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5.1.1 Super-Poincaré algebra and BPS states

The Super-Poincaré algebra in 4d for A supercharges consists of the usual 10 generators
MM | PF of the Poincaré algebra and a pair of A supercharges Q! , Q47 with I =1,2,... N
satisfying the Majorana condition

Qar = (QL)T. (5.1)

The supercharges Q!, and Q4 transform in the (3,0) and (0, 5) representation of SL(2, C).
In addition to these spacetime symmetries, one can have an internal symmetry in the theory
generated by the bosonic generator ? {By}. The full algebra is then given by (see [6] for
details):

{ {wQﬁ'J} = 2PMO'ZB5§
{QL, Q%) = eapz"’

{Qar. Qs } = —casZis
Qe P*] = [Q%, P') =0

5.2
Q4 M) = (00 @} o
[Q?a Muu] = (O'MV)g Q?
(B, Bm] = "o Bn
[QL. Bl = 5/,Q!
[Qaz, Be] = (5*)/1Qe-
along with the commutators of the Poincaré algebra
{ [M;un Mpa] = nupMua - nupMua - nUuMpu + nauMpu
l [P/u Mpa] = nupPa - nuapp (53)

i[P,, P, =0.

In this equation, o* are the Pauli matrices with 0 = 1, € = io?, Z!/ is called the central

charges since one can show that it commutes with all the generators of the algebra and Z;;
are its complex conjugate, o and 6" are the standard SL(2,C) generators, f7),  are the
structure constants of the internal symmetry algebra and {Sy} are a representation of the
internal symmetry algebra acting on the supercharges. An explicit automorphism of the
algebra is the transformation of the supercharges by any unitary transformation U:

QL = UjQL,  Qar — (UNQas (5.4)

as long as the central charges transform accordingly. The group of transformations can be
atmost U(N) and is called the R-symmetry group. The R-symmetry group for N’ =4 SYM
turns out to be SU(4). This will be important later as this will correspond to the isometry
group of S° since SU(4) is the double cover of SO(6).

2in the sense that they satisfy commutation relations rather that anticommutation relations.
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To construct the irreducible representation of the Super-Poincaré algebra, called a super-
multiplet, one first constructs the quadratic Casimirs of the algebra. It turns out that P?
is still a Casimir but the Pauli-Lubanski pseudovector squared, which was a Casimir in the
Poincaré algebra, no longer commutes with the supercharges and hence is not a Casimir.
As a result the mass is constant in a supermultiplet but the spin can change resulting in
a supermultiplet consisting of a bunch of particles of different spins. To construct these
explicitly, we first define the Clifford vacuum. We now outline the steps of constructing the
supermultiplet.

Vanishing central charge

For vanishing central charge, we define the annihilation and creation operators as

1 I 2 _ 2 1L A, 2 _ 2
o =9\ 1 1 2 7 O 2 (5:5)
5@ P*=0 »Qar  P=0.
One can show using the Super-Poincaré algebra that
{aé,aj;-u} = 5§5a6' (5.6)

The Clifford vacuum is defined to be annihilated by all annihilation operators a,r. Using
the Casimirs of the algebra one shows that the Clifford vacuum for massive states is charac-
terised by mass m > 0 and spin j with a total of 2j+1 degrees of freedom and transforms in
the usual spin-j representation of the Lorentz algebra and the Clifford vacuum of massless
states is characterised by the helicity A with two degrees of freedom. Then we construct
the supermultiplet using the creation operators. For the massless supermultiplet, going to
the rest frame one shows that ag ;= 0 and hence we only have A creation operators. Con-
sequently a general massless state in the supermultiplet is obtained by applying 1 < k < N
number of creation operators and hence the total number of states is

i .
k=1
Next the algebra also shows that the creation operators raise the spin (helicity) by 1/2

and the annihilation operator decrease it by 1/2. Thus a supermultiplet constructed on a
Clifford vacuum |Ag) has the helicity content

1 N
Xo), al [Xo) =X + )T abal ho) =[N+ s oo, alal, ho) = ho + 5
(5.7)
This is not CPT invariant unless
N

and hence in general we need to add the CPT conjugates. The massless supermultiplet for
N =4 SYM is constructed on \y = —1 and hence is CPT invariant. The supermultiplet
has the content:

1 1
—1,4x ——,6x0,4x =,1]). 5.9
(~1ax-g6x0axg1) (5.9)

—90 —



The vector is a singlet under SU(4), the fermions transform in the fundamental repre-
sentation and the six real scalars transform in the fundamental of SO(6). The massive
supermultiplet is constructed similarly with the 2\ creation operators. The more interest-
ing massive supermultiplet appears for non-vanishing central charge.

Non-Vanishing central charge

Using the algebra one can show that Z!Y acts trivially on the massless supermultiplets
and hence it remains the same even with non-vanishing central charge. For m > 0, the
creation/annhiliation operators as defined in (5.5) do not satisfy the algebra in (5.6). To
deal with this problem, we transform the supercharges by some U(N') transformation as in
(5.4) such that the central charge transforms to

77 = vl z’%LuT)] (5.10)
where Z''7 has the form
0 21
-7Z1 0
0 Zy
-7
7z = 2 0 (5.11)
0 ZN/2

for even NV and for odd NV, we add a zero row and column to Z’// and treat the last su-
percharge as N’ = 1 case. This is called the Wess-Zumino decomposition. In the above

decomposition, Z; are real and nonnegative. The R- symmetry index I can be now de-

composed into a pair I = (A,a) where 1 < A < %f and a = 1,2 where a is the matrix

index of each block in the Wess-Zumino decomposition is Z4e®. We then define creation
annihilation operator as

17 - _0v48]
aé = ﬁ _Q}NA +€a5Q~y2A(UO)W_ ;
_i_ 1 r_ _ . -
(ad)' = N Qara +€,5(6°)7Q24|
2 - (512)
bl = NG _ng‘ - €aBQ«‘,2A(5O)w_ ;
at 11 L =0\By24]
(b3) = 7 Qa1a —€,5(07)77 Q5 IE
Then these operators satisfy the algebra
T
{aé, (a?) } =(2m+ Z4) 03551]‘2
(5.13)

}
{bg, (bg) } = (2m — Z) 0° 108,

— 21 —



There are now 2N creation operators. One can again show that (a‘i“)T, (b’{‘)T lower mg of
the Clifford vacuum while (a‘;)T, (bg‘)T raise it. Unitarity of the QFT demands

Z4| < 2m. (5.14)

This is called the BPS bound and a state which saturates this bound is called a BPS state.
BPS states are special because they are annihilated by some of the creation operators and
hence have lesser degree of freedom than non-BPS states. Indeed if Z4 = 2m, then

{b;‘, (bg)T} —0 (5.15)
and (bga)T|m, j) is again vacuum since
bpsblylm. 5) = bly,baslm, j) =0 (5.16)
for every B, 3.

Let 0 < k < [N/2] be the number of Z4 which saturate the BPS bound.

e k = 0, no states saturate BPS bound: The oscillators contribute to 22N d.0.f of the
spectrum and it is same as the vanishing central charge spectrum. This is called the
long multiplet.

e 0 < k < [N/2]: k number of oscillators annihilate the multiplet, thus oscillators
contribute to 22W=k) d.o.f of the spectrum. The spectrum is said to be %—BPS
multiplet. The multiplet we get is a stort multiplet.

o k= [N/2]: We get an ultrashort multiplet. Here we have 2N d.0.f from the oscillators
and is called the %—BPS multiplet.

5.1.2 The N =4 SYM Lagrangian and its symmetries

Now that we know that massless A/ = 4 supermultiplet contains a vector boson, 4 Weyl
fermions and 6 real scalars, we can try to construct an offshell field representing this su-
permultiplet. The superfield formalism is not very useful here. So we work in component
formalism. The component fields are A#, A, ¢! where I is the SU(4)g index and « is the
spinor index of the Weyl fermion. If we consider the N’ =4 SYM with gauge group SU(NV)
then each of the component fields have a gauge index a and each of the fields are Lie alge-
bra valued as in the usual gauge theory. The Lagrangian of the theory can be obtained in
atleast two different ways:

1. From N = 1 Superfields: this requires three chiral superfields and a vector supefield.

2. Dimensional reduction: one can dimensionally reduce the d = 10 N' = 1 SYM to
obtain the 4d, N' = 4 SYM Lagrangian.
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We refer to [1] for details. Using either of the two methods, the 4d, N' = 4 Lagrangian can

be written as [3]
1 0
L£L="Tr (-2 FuF" + — Fy (+F)" —ZZA "D /\I—ZD o' D'’
295 0 8T
(5.17)

+9y M Z C{Ar [6", M) + gy Z Cro M [¢7, M5] + gYM Z ¢, ¢J
IJK 1K

Here gy is the coupling constant,  is called the instanton angle, C1'¥ is the structure
constant of SU(4)g, D, is the gauge covariant derivative defined as

Dy =0y —igymAu = 0y —igymT* A, (5.18)
where T are the generators of SU(NV) satisfying
[T°T?) = if®T¢, Tr(T°T°) = §%°. (5.19)
F# is the usual field strength defined by the commutator of D,,:
=[D,,D,]| = F*"'T1° (5.20)

where

FO = 9, A% — 0,A% + gy % Ap Ay (5.21)

(+F)" is the Hodge dual of F*. The trace in the Lagrangian is over the gauge index. We
now list the symmetries of the lagrangian.

1. Poincaré invariance: the Lagrangian is easily seen to be invariant under Poincaré
group. It is generated by PH, M*" satisfying the Poincaré algebra (5.3).

2. Gauge invariance: the Lagrangian is gauge invariant since the gauge index is traced
over.

3. Supersymmetry: under supersymmetry the component fields transform as [1]

(66)2 = [Qn, 0" = CTiErs
(5)‘51 a {Qw)‘ﬁl} = F+u (O—w’)aﬁ 5}] + [¢K7¢L] €ap (CKL){
\J i (5.22)
1\ _ [T I JI b K
R
(04"), = [Q3, A"] =agﬁw
where F}, is the self-dual part of F},, given by
1
Fl = =(Fuw + (+F)) (5.23)

2

and the constants (CKL){ is related to the bilinears in Clifford Dirac matrices of
SO(6)g. This is generated by the 4 supercharges Q! and its conjugate Q I
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4. Conformal invariance: using the mass dimensions of the fields [4,] = [¢] = 1,[A\s] =
3/2 and the mass dimension of the Lagrangian® [£] = 4, it is easy to see that [gy /] =
0 = [#]. Now since all the fields are massless, the action is classically scale invariant.
Infact the Poincaré invariance combines to enhance the symmetry to full conformal
invariance. Infact the theory is conformally invariant at quantum level as well since
the renormalisation beta functions of the coupling constants vanish upto all orders in
perturbation theory and hence quantum corrections do not introduce a mass scale in
the quantum theory. This is generated by the the Poincaré algebra generators along
with the genrator of scaling denoted by D and the special conformal transformation
generator K, which acts on space as in (3.3). The full algebra is (5.3) along with

D,

P =

(D, Ku] =

(K, ]—2177WD M)
]_

i (Mo = Mpu K1)

(5.24)

[,

5. Superconformal invariance: the fact that the theory is invariant under conformal as
well as supersymmetry transformation enlarges the symmetry of the theory to super-
conformal symmetry. For the algebra to close, we need to include another generator
SIS a1 called the conformal supersymmetry generator. The algebra is

{8285} = { = } =0

{s{w SB-J} = 20" K0} (5.25)
1

{QL, 857} = €ap (5D +T7) + §5§MW (") s

where {T4}1°_| are the generators of the SU(4) g symmetry. See [1, Appendix B.3.2]
for the full algebra.

6. S-duality: N =4 SYM is invariant under the S-duality group SL(2,7Z). To describe

this duality, put
0 4mi

Ti=—+4 . (5.26
27 g)z/M )
Then the theory is invariant under
at +b ab
—_— L(2,Z). 2
T_>c7-+d’ <6d>68(,) (5.27)

This duality is enormously important because it maps a weakly coupled theory to a
strongly coupled theory, this is called the strong-weak coupling duality. Indeed under
the matrix () §), we see that

1
e g (5.28)

3required for the action to be dimensionless.
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When the instanton angle § = 0 then under this transformation

47

This means that a strongly coupled theory gets mapped to a weakly coupled theory.

The above discussion reflects the fact that the full symmetry group of N’ =4 SYM theory
is the supergroup SU(2,2[4).

5.1.3 Representations of the superconformal algebra

We want to construct local, gauge invariant operators in the theory. We restrict to operators
which are polynomials in the local fields A,, Ao, ¢ so that the scaling dimensions of the
operators is well defined. Now a given local operator O is characterised by the scaling
dimension A and the spin:

[D.0(0)] = ~iAO(0),  [My,0(0)] = —M,,0(0) (5.30)

where M,,,, is the representation of the Lorentz generators M, on fields. Other generators
of the superconformal algebra act by raising or lowering the scaling dimension. For example
Q! raises the conformal dimension by 1/2 and SZ lowers the scaling dimension by 1/2 and
as a result of the superconformal algebra, P* and K, raise and lower the scaling dimension
by 1 respectively. Now since the conformal supersymmetry generator S. lowers the scaling
dimension, there exists operators which are annihilated by Sé, otherwise we would produce
arbitrarily negative scaling dimension operators which break the unitarity of the theory.
These operators are called the superconformal primary operators. Thus superconformal

primary operators have to satisfy
[S5,0} =0, [Sa1,0} =0 (5.31)

where the commutator or anticommutator depends on the operator O being bosonic or
fermionic.

Remark 5.1. Recall that in conformal field theory, primary operators are those which
are annihilated by K. Because of the superconformal algebra, a superconformal primary
operator is a conformal primary operator but the converse is not true.

Now the descendents can be constructed by applying any other generator of the supercon-
formal algebra on the superconformal primaries. For example applying [P*, O] = —0,0
has scaling dimension A + 1. In particular, the superdescendents are those obtained by
applying the supercharge:

o' = [QL,0}. (5.32)
Clearly

Superdescendents are conformal primaries as can be easily seen from the superconformal
algebra. In particular note that each superdescendent gives rise to a Verma module and
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each such Verma module is related by supersymmetry transformation. On each such su-
perconformal primary, we construct a tower of descendents and this gives an irreducible
representation of the superconformal algebra. The full spectrum is the direct sum of all
these highest weight representations.

Let us now apply this to N' =4 SYM. We need to identify the superconformal primaries.
Note that the Q-commutator of any field cannot be a superconformal primary since apply-
ing S lowers the scaling dimension by 1/2 and hence the @Q-commutator is not annihilated
by S. We now list all the Q-commutators:

{QAY=F"+p,0; [Q, 0] =X
{Q,\}=D¢;  [Q,F] =D

Next the superconformal operators cannot be constructed out of only the gauge field as it is

(5.34)

not gauge invariant. Thus the only left option is the scalar fields. Thus all superconformal
primaries are polynomials of the scalar fields. To construct gauge invariant operators, we
need to take trace over the gauge indices which symmetrises the R-symmetry indices. The
simplest operator are the single trace operators of the form

O, = str[op™ ... '] (5.35)
where “str” stands for symmetrised trace defined on the generators T as

str[T% ... T = Y [T . T%m)], (5.36)
UESn
One then defines the symmetrised trace of ¢! by expanding ¢! = ¢IT%. Since the trace of
generators of SU(INV) is zero, the simplest single trace operator is the Konishi multiplet
str[p! ¢] = Tr[¢! o] (sum over I) (5.37)
and the supergravity multiplet
1
str[pl ¢?] = Tr[pl¢”] — 65IJTI[¢K¢K] (sum over K). (5.38)

BPS states

The states in the theory are representations of the SU(2,2|4) symmetry group. Thus
the states are labelled by the quantum numbers corresponding to the Poincaré* group
SO(1,3) x RY3, the SU(4) g R-symmetry group and the dilatations SO(1,1). The massless
representations of the Poincaré group are labelled by helicity s, s—. The quantum number
for dilatations are labeled A > 0. The representations of SU(4) are labelled by the three
Dynkin labels [r1,r2,73]. The dimension of the representation is given by

dim(ry, re, 3] = H

1<i<;j<3

Ti—Tj—i-j—i

7 (5.39)

4remember that we are looking at massless representations, which means that translations do not con-

tribute to the labels.

— 96 —



The conjugate representation of [rq,ra, 73] is denoted by [r1, 72, r3]* and given by
[r1, 72, 73]" = [r3, 72, 71]. (5.40)

Unitarity demands that the conformal dimension be bounded below by the spin quantum
number and also the R-symmetry labels. A careful analysis of the representation labels
based on the su(2,2[4) algebra gives [4]

(1) A=ri+ro+rs

3 1 1 3
(2) A=gridratgry 224 ontratory T3 +2

(5.41)

1 3 3 1
(3) A:57“14-7"2—1—57“3224-57"1—1-7"2—1—57“3; r3 > 11+ 2

(4) A > Max 2+%T1 +T2+%T’3;2+%T1 + 19 + g’l“g
Note that (2) and (3) are conjugates of each other. (4) is a kind of BPS bound which when
saturated results in atleast one of the supercharges to commute with the corresponding
primary operator and hence these primary operators do not create new states by acting
on the vacuum in the theory and the multiplet is shortened. The multiplets we get when
the BPS bound is saturated is called the BPS-multiplet in analogy to the supersymmetric
BPS-multiplits discussed above. The first three cases are discrete series of representations
and are clearly the BPS-multiplets. The importance of BPS-muliplets lies in the fact that
the conformal dimension is given exactly in terms of SU(4) labels and hence group theoretic
reasoning demands that the conformal dimension are protected again quantum corrections,
that is the conformal dimensions of the BPS primary operators are not renormalised. This
is important because we will see later that the AdS/CFT correspondence related the weak
coupling limit of Type IIB string theory (which is a supergravity theory and calulations
are easier to perform here) to the strong coupling limit of N' = 4 SYM (and hence it is
hard to do perturbative calculations here). Since the conformal dimensions of BPS primary
operators are non perturbative objects, they have an exact observable in the string theory.

The operators corresponding to (4) are non-BPS primary operators and the conformal
dimensions of non-BPS operators are unprotected. We now list the quantum numbers of
the BPS operators in a table. #(Q represents the number of supercharges that commute
with the operator.

’ Operator type ‘ #Q ‘ spin range ‘ SU(4)r primary ‘ dimension A
identity 16 0 [0,0,0] 0
1/2BPS 8 2 [0,k,0],k > 2 k
1/4BPS 4 3 [0k, 0], 0> 1 k+2¢
1/8BPS 2 7/2 [0, k, 0+ 2m) E+204+3m,m>1
non-BPS 0 4 any unprotected

Table 1. BPS and non-BPS primary operators
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5.2 Type IIB String Theory and Supergravity

We now discuss the other side of the AdS/CFT corresponding, namely the Type IIB string
theory on AdSs x S°. We begin by a general discussion of string theories and superstring
theories.

5.2.1 Bosonic String Theory

String theory is a theory of strings — a one dimensional object. As usual we start with
an action, which in analogy with the action for a point particle, is the area of the surface
called the worldsheet traced by the string. To write an expression for the action, we need to
embed the string in a D-dimensional manifold M called the target space via an embedding
X : R x[0,/] — M where L is the length of the string. Parameterising the worldsheet by

(a7

0% = (1,0) = o the embedding in the target space is given by coordinates X*(7,0). The

string action, called the Nambu-Goto action is given by

M

2ma!

where M is the surface traced by the string, o/ is called the Regge slope. If we denote the
intrinsic metric on the worldsheet by

hag = 0o X"03X . (5.43)
The action can then be written as

1
Sna = 5 /M dodrLng, Lng = [—det(hag)]

N

(5.44)

This action is not very easy to work with. We work with the Polyakov action which can be
shown to be equivalent to the Nambu-Goto action. The Polyakov action is given by

/ dodr\/—gg*? 0, X" 95X ., (5.45)
M

Sp=—
P 4o/

where g = det(¢®?) is a general worldsheet metric. Now the metric on the worldsheet is
dynamical, so the Polyakov action can be considered as a bunch of scalars coupled to 2d
gravity. This action possesses three different symmetries:

1. Reparametrization invariance: the parameters transform as 0* — ¢ = 5%(o). The
scalar fields X* transform as

XM (o,7) — XM (%) = X* (o)
and the worldsheet metric g, transforms in the usual way

o an 007 000
9o — GaB (6%) = @ngé(g)'

2. Poincaré Invariance: this is a global symmetry of the action.
XM — XM= AP XY + ¢

for some constant ¢# € RP~11 and A¥, € SO(D —1,1).
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3. Weyl Invariance: there is another gauge invariance called Weyl symmetry. Under this
XH* — X* and the metric transforms as

Jap — Jap = 0*(0)gas
or infinitesimally if Q%(o) = €2#(?) then
89 = 20(0)gap-
This only works when the worldsheet is 2d.

Let us vary the action with respect to X*# with 6X* (0,79) = dX* (o, 71) = 0 for some
initial and final value 7y, 71 respectively of the parameter 7. We get

T1 4 l
1 o 1 ; "
3Sp = M/dT/da (0a0XH) 6X,, + 2m,/da (67X") 5 X, .
70 . 0
=0as 6XH* (0,70) =0X*(0,71) =0
1 ¢
o H
+ 5 /dT (@ X"5X,) |

) N ———

surface term

(5.46)

To get the equations of motion, we need the surface term to go to zero. Physically we
distinguish between two cases - the closed string and the open string. For the closed string
XH(o+4L,7) = XH"(0o,7) and the surface term vanishes. For the open string, we can impose
two different boundary conditions:

1. Dirichlet boundary condition: X, =0 at o =0,¢.
2. Neumann boundary condition: 9,X, =0 at o =0, /.

The equations of motion are
0,0°XH* =0 (5.47)

which is the wave equation. We will briefly recall the quantisation of closed an open strings
and discuss the derivation of the critical dimension.

Closed String

Before we solve the equation of motion, we need to impose the constraint obtained from the
equation of motion of g,z since it was an auxiliary field. To simplify the constaint, we can
use the reparametrization invariance and Weyl symmetry of the action to set gog = 10—

this is called the conformal gauge. The equation of motion for g,z is

1
00 X"05 X, = 59050 X"0°X,.
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Also the energy momentum tensor for the Polyakov action is given by
1
—— = 0o X"0p X, — §gaﬂ60X“6‘3Xu.
So the constraint is
1
Taﬁ’!]aﬁ:mmﬁ = 0a X105 X, = §770@380XM80X# =0. (5.48)

So we have to impose two constraints
1k 3! L /oo 2
XrX! =0, 5(X +X ):o, (5.49)

where the dot is derivative with respect to 7 and prime is derivative with respect to o. So
the equation of motion is a wave equation along with the two constraints. The solution to
the equations of motion is given by

Xto,7) = X'+ X}, (5.50)
where®
.%'” 1 . O/ 1 ~t it
Xt (oh) = -+ io/p“crJr iy 5 ;} Eaﬁe na
n
(5.51)
_ ot 1 N s % 1 L
X (o) = > + §a'p“a —H\/EZEO‘ZG o
n#£0
where 0 = 7+ 0. The functions X" are called left movers and Xg are called right movers.

Reality of X* implies that

()" =a”, and (@) =a

Vn € Z\{0}.

n

Imposing the constraints gives

1
L= Zak = 0. (5.52)
kEZ

and En = 0 for all n € Z where En is defined with & analogous to L. Here ag = /a//2pH.
To quantise the closed string, we promote the modes o}, and a4, to operators and impose
ot V] = int
. » =P ]w 71” (5.53)
[an’ am] = mn 5m+n,0 = [ama an]
The L,’s of (5.52) are now operators but to define Ly, we need to impose normal ordering
on the modes. We put of,, n > 0 to the right of a},, n < 0. The algebra satisfied by L,
is then the Virasoro algebra given by

[Lyy L] = (1 — 1) Lipm + 1—02 (n (2 =1)) mno (5.54)

Sthe length of the string has been normalised to 27.
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and similarly for En Here c is called the central charge and is related to breaking of Weyl
symmetry in the quantum theory. For D scalar fields ¢ = 7, = D. Since this is a gauge
symmetry of the theory, we want this anomaly to cancel in the quantum theory. Indeed in
superstring theory which we will discuss soon, addition of worldsheet fermions contributes
to central charge and the anomaly cancels when D = 10 giving the critical dimension of
the superstring. The ground state of the theory is now defined by

ahl0;p"y =0=akh|0;p") for p=0,1,...,D—1; n>0 (5.55)
where p* is the momentum of string ground state. A general excitation of the string is

(Oéull)mbl (aué)”w .. (alfl)”‘/l (ay22)ny2 te |0§p“>.

We now have negative-norm states in the theory. Indeed since n°° = —1, it can easily
be checked that for |¢) = a2, |0;p*), (¥|¢) = —m < 0. It turns out that these states
decouple from the theory if we choose D = 26 — the critical dimension of bosonic string (see
[8] for proof). This is the covariant quantisation since it is manifestly Lorentz invariant.
There is another quantisation scheme called the lightcone quantisation, which breaks Lorentz
invariance and avoids negative norm states. But at the end when we enforce Lorentz
invariance, we need to fix D = 26. For more details see [8]. It turns out that the string
ground state is tachyonic — a red signal. The first excited state is massless and the particle
content is

1. gu(X) : the traceless symmetric tensor field which we will identify with graviton.

2. B,,(X) : the antisymmetric tensor field. This is sometimes called the Kalb-Ramond
field.

3. ®(X) : the trace part of the tensor representations. This scalar field is called the
dilaton.

All higher excited states are massive.
Open Strings and D-branes

The general solution to the wave equation (5.47) remains the same, we need to impose
the boundary conditions to determine the specific form of the solution. In general one can
apply different boundary conditions at the two ends of the open string. For example, one
can have Neumann boundary condition at both ends (NN). Analogously other boundary
conditions can be (DD), (ND) and (DN) where D stands for Dirichlet boundary condition.
Also note that we can differentiate between the boundary conditions in different directions.
For example we can apply NN for 0 < y < p and DD for p+ 1 < p < D — 1. This means
that

0, X*=0fora=0,---,patc=0,7
xto,n=¢, Xi(m,7)=d" forI=p+1,---,D—1,
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where we have normlaised the string length to 7. This fixes the endpoints of the string
in the D — p — 1 directions and hence is constrained to move in the (p 4+ 1)-dimensional
hypersurface. This hypersurface is usually called a Dp-brane. So a D0-brane is a particle, a
D1-brane is itself a string, a D2-brane is a membrane and so on. In particular if p=D —1
then we get to NN case which means all space is a D-brane, that is we get space filling
D-brane. Now the quantisation. In covariant quantisation, again a similar analysis as in
closed string quantisation results in D = 26 independent of the boundary condition. The
spectrum depends on the choice of boundary condition. The ground state is tachyonic, first
excited state is massless and all higher excited state is massive. One can show that the
maximum spin at level® n is n. Thus the first excited states are spin 1 particles which we
can identify with photons.

Open String | Closed String

Ground state Tachyonic Tachyonic

First excited state A, Guvs By, ®

It is worthwhile to note that the mass of the string excitations are inversely proportional
to o/ and hence in the low energy limit o/ — 0, the mass of higher exited states go to infinity.

We now quickly review how gauge theories arise on the worldvolume of D-branes.

One Dp Brane: the boundary condition is
XH0,7) =¢cl = XH(m, 1) p=p+1,...,D—1.

Thus the ends of the string are constrained to lie on one Dp brane. The ground state is
now defined by

al |0;p") =0, n>0, i=1,2---p—1,p+1,---,D—1.

Note that the string momentum p# is actually only in p 4+ 1 directions. The SO(1,D — 1)
Lorentz group is broken into SO(1,p) x SO(D — P — 1). As the first excited state has
maximum spin 1, these states represent gauge fields. We introduce a gauge field 4;, i =
0,...,p and its quanta represents spin 1 photons. The other oscillators are

ol j0;p"y, T=p+1,....,D—1.

These transform as scalar representations of SO(1,p) and hence we introduce D — p — 1
scalar fields ¢!. Although ¢! transform as scalars under the SO(1, p) Lorentz group of the
Dp-brane they transform as vectors as representations of the SO(D —p— 1) rotation group.
This appears as a global symmetry of the brane world volume. One can also consider ¢!
as the Goldstone Bosons associated to the spontaneously broken translational symmetryor
as fluctuations of the D-brane itself. this indicates that the D-branes itself are dynamical
objects in string theory.

Sexcited states with n oscillators acting on the ground state
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Two Dp-branes: This means that the string is stretched between two branes. The bound-
ary condition is X#(0,0) = X#(m,0), wpw=p-+1,---,D — 1. One can show that the first
excited states a’ {]0,p’) in this case are no longer massless.

In general we can stack N such Dp-branes on top of each other and denote the massless
vector excitation as

0/—1 |ka K? pz>
where k, £ are labels which encode the Dp-branes on which the endpoints of the string end.

These are called Chan-Paton labels. The resulting N? states can be embedded in an N x N
matrix and expanded in a complete set of N x N matrices

k7€7p1>:A%€’a7pl>7 GE{l,"' 7N2}7

where )\, are called Chan-Paton factors. The resulting fields T, Ek, (qﬁl )j and (A“)]g€ can be
fit into Hermitian matrices. The diagonal fields arise from strings ending on same brane. In
this way, (A“)]; can be identified with U(N) Yang-Mills gauge bosons and (qu )if transform
in the adjoint representation of U(V).

Low energy effective spacetime action
One can consider the string propagating in the background of its own massless fields. For

the closed string, this is achieved by coupling the string with the graviton g,,(X), the
Kalb-Ramond field B, and the dilaton. The action can then be written as

1
S=—1- / d*o/—hhP 8, X 95 X" g0 (X)
1 (0% 14
— / 2o (e P90 X 05 X" By (X) — \/—ha’R(2)<I>(X))

(5.56)

where R(2) is the Ricci scalar of the graviton g,,, and €8 is the Levi-Civita symbol. This
is known as the nonlinear o-model. We want to retain the reparametrization and Weyl
symmetry of the Polyakov action. This can be made sure by looking at the renormalisation
group beta functions for the couplings g,,, By, and ®. To first order in o/ we get

1

BY) = o (RW +2V,V,® — 4HMPH3p>
1

/3/(15) = O/ <_2v>\H)\;uz + VA@HA;U/) (557)

1 1
B = o <2v2c1> + V, OV D — MHW,\H“"’\)

where H = dB is a 3-form field strength and R, is the Ricci tensor for g,,. Indeed in the
low energy limit, only first order contributions are relevant. We see that the vanishing of
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the S-functions can be encoded in the equations of motion of a spacetime action, called the
low energy spacetime action of the closed string, and given by

1
Set. = [ d*z+/—det ge *® (R — EHWHW + 4v#c1>v#c1>> (5.58)

In superstring theory, this method of deriving the spacetime action gives rise to supergravity

theory as the low energy approximation of string theory.

5.2.2 Superstring theory and Supergravity

We now briefly discuss superstring theory. The bosonic string theory described in previous
section is inherently incomplete because it does not contain fermions. Moreover, it is
fraught with problems like the tachyonic ground state and the critical dimension being
26 which is far from 4 which we live in. So we introduce fermions in the theory. There
are two equivalent formalisms of introducing fermions: the Green-Schwartz formalism (GS)
where we introduce spacetime fermions in the target space and the Ramond-Neveu-Schwartz
formalism (RNS) where we introduce worldsheet fermions on the 2d worldsheet. We follow
the RNS formalism. The action is modified to

1
4o/

S =

/M dodr/—g0a X" 0% X, + 1UFT 0,0, (5.59)
where I'* are the 2d gamma matrices satisfying
{re, 18} = 298 (5.60)

where U# = U9 One can choose a simple representation of the gamma matrices such
that when the fermion is decomposed into Weyl spinors U# = (wﬁ‘r, Y"), the fermionic action
takes the form

Sy =—

o /dzg (Wi&r%— + Wﬁa—ww) . (5.61)

The equations of motion are
8_1/Ji = 0" =0. (5.62)

But one needs to make sure that the boundary term vanishes while deriving this equation
of motion. Indeed the boundary term has the form:

O=T

65‘1"boundary X /dT (77/)5577/}—# - wiédj—i—u) (563)

o=0

This leads us to the following boundary conditions for open superstrings:
1. Ramond Sector (R): ¢4 (1, 7) = +¢ (7, 7).
2. Neveu-Schwarz Sector (NS): ! (7, m) = = (7, 7).

We could have chosen ¢/} (7,0) = +¢" (7,0), but these are redundant in the sense that they
are not physically different, and so one imposes ¢! (7,0) = 4+ (7,0) by convention.
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For the closed superstring, the boundary term vanishes because from the contributions
of both wi&piu}gzﬂ and wiéwiu‘azo. There are 4 different ways of doing this:

@Z)i (r,0) = :i:w_’f_(T, o+ )
Y (r,0) = £ (1,0 + ).

We thus have 4 sectors of the closed superstring theory: R-R, R-NS, NS-R, and NS-NS,
where R refers to periodic and NS to anti-periodic boundary conditions.

The theory is quantised as usual by promoting the modes of the solutions of equations
of motion to operators and imposing (anti)commutation relations. The Virasoro algebra is
now extended to the superconformal algebra and the negative norm states are removed from
the theory using this extended algebra and unitarity. The theory now has different vacuum
for NS and R sectors, the vacuum of NS sector is a tachyon while the vacuum of the R
sector is a spacetime spinor. Thus all spinors in the target space arise from the worldsheet
spinor.

Since a fermion contributes to central charge %, the total centralc ahrge with D bosons
X#* and D fermions W* is D(1 + %) Next there are two different types of ghosts in the
theory, the bc ghost coming from the gauge fixing of reparametrization invariance and the
B~ system coming from the definition of the BRST current. Both the ghosts contribute 11
to the central charge. Moreover the consistency of the theory requires the central charge to

be ¢ = 26 — 11 = 15. Thus we must have

1
D(1+3)=15 = D=10. (5.64)

Thus the critical dimension of the superstring theories is 10.

Now in this superconformal field theory, the OPE of NS sector with the R sector has square
root singularity and hence are nonlocal. Thus to make sense of the theory, we need to
project to a subset of operators in the theory which are pairwise local. This process of
projection is called the GSO projection. GSO projection projects out the NS vacuum and
also one of the chiralities of the R vacuum. For the closed string, The NS-NS and R-R
sectors have integral spin while the NS-R and R-NS sectors have half-integral spin. Also
for the closed string, there are two inequivalent choices of the R vacuum giving rise to two
string theories, the Type ITA and Type IIB. We will focus on the Type IIB. The massless
spectrum of Type IIB is shown in table below.

RR Ag, Az, A
R-NS Uyt
NS-R U2 X%
NS-NS | @, Ba, g,

Table 2. Massless spectrum of Type IIB string theory
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where A, is an n-form (and Afis self-dual), U4 (I = 1,2) are right-handed dilatini, x*
(I =1,2) are left-handed gravitini, and the NS-NS sector is just the massless sector of the
closed bosonic string spectrum. We see that the theory is chiral since the 2 dilatini and the
2 gravitini have the same chirality.

Type IIB superstring theory also has a low energy effective spacetime action and remark-
ably it turns out to be a theory of supergravity in D = 10 with A/ = 2 supersymmetry.
Moreover this the maximal supersymmetry with 32 supercharges one can have in D = 10
supersymmetric theories containing gravitons. The full action cannot be written because
of the self-dual form AI but once can write an action with A5 = dA4 and other fields and
then impose xF5 = F5. The bosonic part of the action is

1 _
Stypettn = 15 | d"wy/=detge™ (2R + 8V, 0V"® — |Hy[)
1 1 (5.65)
_W/dwx |:\/Tetg <‘F1’2 + ’F3‘2 + 2’F5‘2> + Ajl_ N H3z A F3:| + Stermions

where « is the coupling constant, F,, = dA,,_1 is the n-form field-strength, Hj is the 3-form
H3; = dBo>, Fg = I3 — AgHj3 and 13’5 =I5 — %Ag N Hg + %Bg A F3 and the modulus squared
is defined as

|F > = g™ g" " Fuy i Forn- (5.66)

The Type IIB action exhibits a noncompact SL(2,R) symmetry. To describe it, transform
the metric to the Einstein frame as follows:

Guv — e_q)/2guu- (5.67)

Combining the azion Ay and the dilaton into a complex scalar 7 = Ag+ie~®, the symmetry
transformation is given by:

T —

at +b <ab

— Cd) € SL(2,R). (5.68)

In the quantum theory there is a quantization condition 7 ~ 7+ 1, and thus the symmetry
group reduces to the subgroup SL(2,7Z).

Branes in supergravity and superstring theory

We now introduce D-branes in supergravity. If we have a p 4+ 1 form A,,;, then we can
natually couple it to a (p + 1)-dimensional hypersurface ¥,,1 of the spacetime via some
coupling T}, 11. Indeed we can define the action of the coupling as

Spt1 = Tp+1/ Apy1. (5.69)
Ypt1
The action is clearly diffeomorphism invariant. Moreover this action is invariant under the

gauge transformation
Ap+1 — Ap+1 + dpp (570)
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where p,, is a p-form. The field strength of the (p+1)-form is the (p+2)-form Fj, 1o = dA,11.

Solutions to supergravity with nontrivial Apy1 charge are referred to as p-branes, after the
space dimension of their geometry.

Each Ap1 gauge field has a magnetic dual Agig;_p which is a differential form field of

rank D — 3 — p, whose field strength is related to that of A,; by Poincaré duality:
dAgigélp = xdAp41 (5.71)

Thus we see that each p-brane also has a magnetic dual, which is a (D — 4 — p)-brane and
which now couples to the field Agig;_p. It is now clear that the p-branes in a supergravity
theory depends on the form fields in the theory. For example, the low energy limit of Type
IIB superstring theory, which is a supergravity theory in 10 spacetime dimensions, has
the Kalb-Ramond field and hence it will have branes. The list of all branes in Type IIB
superstring theory is listed in table below.

Brane p-form Magnetic Dual
D(-1) | 7=Ap+ie ® D7
F1 By NS5
D1 Ag D5
D3 Ay D3

Table 3. Branes in Type IIB superstring theory

In the above table, the terminology used is the following:

1. The brane corresponding to A,i-form is called a Dp-brane in analogy to the open
string theory. It turns out that these Dp-branes are intimately related to the open
string theory Dp-branes in the weak string coupling limit and that is why we use the
same terminology for both of them. We refer the reader to [3| for details.

2. D(—1) branes are called instantons since they are localised in space as well as time.

3. the 1-brane which corresponds to the 2-form NS-NS form field By, is called the
fundamental string F1. The NS in NS5 simply means that B, is an NS-NS field.

We will focus on D3 branes since these are self-dual and important in AdS/CFT correspon-
dence. Finally note that once we identify the D-branes in supergravity with the D-branes
in open string theory, SU(N) gauge theories can be understood as the spectrum of stacks
of N D-branes as explained at the end of Subsection 5.2.1. Moreover, it turns out that
each brane solution to supergravity breaks half of the supersymmetry and hence one can
recover N' = 4 super Yang-Mills with gauge group SU(N) from the spectrum of a stack of
N D-branes in Type IIB superstring theory.
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5.3 The Decoupling Argument and the Statement of the Correspondence

The decoupling argument due to Maldacena [7] is based on the two ways of interpretating
D-branes in Type IIB superstring theory. The first interpretation is the one where D-
branes are described as hypersurfaces in spacetime on which the ends of an open string
are constrained by boundary conditions. The second interpretation is as solutions to the
supergravity field equations in the low energy limits of the string theory. We begin by
discussion these interpretations separately.

5.3.1 D-Branes as dynamical walls with open string excitations

As was indicated in Subsection 5.2.1, D-branes are dynamical objects and hence are de-
scribed by an action Sprane. Now if we consider N D3 branes stacked over each other, then
since D3 branes are 4 dimensional, as discussed before, we get 4d A/ = 4 super Yang-Mills
theory with gauge group SU(N) from Sprane. The other dynamical aspects of the theory
are the actions Shy which is the 10d supergravity theory with massive modes as well and
the interaction between branes and supergravity Sprane. In the low energy limit o/ — 0, the
interactions vanish since the interaction term couples as Newton’s contant /Gy ~ gsa'?
where g5 is the string coupling constant. Thus in the low energy limit the theory decouples
to two theories

(N =4 SYM in 4d) & (Type IIB Supergravity in 10d). (5.72)

5.3.2 D-Branes as Solutions in Supergravity

We now consider D-branes as solution to the supergravity field equations. In particular, we
consider N D3 branes in supergravity. The gravitational part of the solution is given by |[3]

1 [ 14
ds? = ﬁnuydx“dx” +4/1+ Edg2 (5.73)
1+
Y

where L* = 41g,Na'?, 2* is coordinate on 4d D3-brane worldvolume and i covers Euclidean
6d space perpendicular to the brane. We need to take L ~ \/a(gsN)i > Iy ~ Vo where
ls is the string length. This is because this guarantees that the curvature is large compared
to the string length and hence supergravity description of the string theory is applicable
and useful. But now note that this requires

Ai=gsN > 1. (5.74)

Thus this description is in the opposite regime compared to the previous description in
terms of gauge theory. We now consider the Maldacena limit. Writing

dif* = dy* + y*dQ? (5.75)
where d)2 is the round metric on S°, the near horizon limit of the D3-brane solution (5.73)
is
y2 L2
ds?/_,o = (LGw,dac“dac” + dey2> + L2d032 (5.76)
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This is called the Maldacena limit and was first discussed in [7]. Note that this metric is
exactly the metric on AdSs x S% in Poincaré coordinates on the AdS space with radius L
for both AdS and S°. Moreover in the y — oo limit the metric (5.73) becomes flat. Thus
the energies at any point and at infinity are related as

E=-——F.. (5.77)

In particular, near the brane, we have

y
Es = 2 E. .
: (5.78)

Thus for an observer at infinity, there are two decoupled theories:

1. At infintity, the theory is effectively a 10d supergravity since gravity becomes free at
low energies/large distance.

2. Near the brane, the geometry of the background is AdSs x S° and the theory is the
full Type IIB string theory.

Thus the theory decouples to
(Type IIB String Theory on AdSs x S%) @ (Type IIB Supergravity in 10d). (5.79)
Thus from (5.72), we can identify
Type IIB String Theory on AdSs x S°> =2 N =4 SYM in 4d. (5.80)

The Precise Statement of the Correspondence is thus:

Type IIB string theory on AdSs x S° (both with radius L) with 5-form flur N and string
coupling gs is equivalent/dual to 4-dimensional N =4 SYM with gauge group SU(N) and
coupling constant gy pr, where the couplings are identified as

gs =gy LY =dng,No”. (5.81)

Several checks have been performed on this correspondence. We refer the reader to 3] and
references therein for the details of the checks.
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