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“The mock theta-functions give us tantalizing hints of a grand synthesis still to

be discovered. Somehow it should be possible to build them into a coherent group-

theoretical structure, analogous to the structure of modular forms which Hecke built

around the old theta-functions of Jacobi. This remains a challenge for the future.

My dream is that I will live to see the day when our young physicists, struggling

to bring the predictions of superstring theory into correspondence with the facts

of nature, will be led to enlarge their analytic machinery to include mock theta-

functions.”

Freeman Dyson, 1988, [1].
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ABSTRACT

Number theory finds wide ranging applications in mathematics. Surprisingly, it

also has deep connections in theoretical physics. Specifically, it appears in string

theory. Although, several objects from number theory appear in string theory we

will study one particular application in this thesis. To be precise, a particular

string theory is the Type IIB string theory compactified on K3 × T 2. The set of

orbits of black hole solutions in this theory under a certain equivalence relation

forms a group which is isomorphic to the group of equivalence classes of positive

definite binary quadratic forms, called class group. Several questions arise due

to this identification which we try to answer in this thesis. We study a quantity

called degeneracy of black hole microstates which is related to a partition function.

The partition function in this theory is a Siegel modular form. This thesis mainly

studies modular forms and class groups and tries to state the above mentioned con-

nection of number theory with string theory with complete mathematical rigour.
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1. INTRODUCTION

1.1 Introduction for mathematicians

String theory in theoretical physics has rich mathematical content[11]. One par-

ticular aspect is the study of black holes in the theory. Black holes in string theory

are characterised by two charge vectors Q and P called the electric charge vector

and the magnetic charge vector respectively. There are three duality transforma-

tion on these black hole charges namely the S, T and U−duality transformation.

In particular string theories, this corresponds to the SL2(Z)−action on quadratic

forms constructed out of the charge vectors. Under U−duality transformation, the

set of orbits of black holes forms a group and is isomorphic to the class group of

binary quadratic forms[14]. This raises several questions regarding the interpre-

tation of the group operation on the black hole side[13]. In mathematics, there is

a well known method to compose quadratic forms using Bhargava cubes[3]. We

want to interpret this method on the black hole side physically. Moreover, we try

to answer the questions using the degeneracy of black hole solution. Degeneracy

is related to the partition function of the theory[12]. This partition function turns

out to be a Siegel modular form. Degeneracy is equal to the Fourier coefficient of

the Siegel modular form upto a sign[12]. Thus string theory is deeply connected

to the theory of automorphic forms. Degeneracy by definition is a positive integer.

Thus the study of the connection of string theory with number theory also pre-

dicts the sign changes of Fourier coefficients of the Siegel modular forms[19]. One

particular type of black hole in string theory are single centered black holes. The

degeneracy of single centered black holes are the Fourier coefficients of mock Jacobi

forms[17]. Thus, there is a relation of mock modular forms and Jacobi forms with

string theory. This thesis is mainly aimed at understanding these connections.
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1.2 Introduction for Physicists

The theory of class numbers and class groups has been a venerable problem in

number theory since Gauss. It is famous result that the number of orbits under

the SL2(Z) action on the binary quadratic forms of fixed discriminant D are finite

in number[10]. This finite set is called the class group. The U−duality equivalence

class of black holes in Type IIB string theory is isomorphic to this group.

Another area in number theory is the study of modular forms which are holomor-

phic fucntions on the upper half space satisfying certain modularity conditions[4].

Generalisation of modular forms are the Siegel modular forms and the Jacobi

forms[9, 8]. Relaxing the holomorphicity condition with an addition condition re-

sults in the theory of harmonic Maass forms and mock modular forms[2, 6, 7].

Mixing mock modular form and Jacobi form in a certain way gives the theory of

mock Jacobi forms[17]. These function admits series expansion called the Fourier

expansion. The partition function of the Type IIB string theory turns out to be

a Siegel modular form and the degeneracy of black hole is the Fourier coefficient

of this Siegel modular form. If we only consider single centered black hole, the

degeneracy is the Fourier coefficient of certain mock Jacobi forms. This thesis first

studies the mathematical topics in detail and then make this connection of number

theory with string theory explicit.

1.3 Goals of the thesis

As mentioned in the introduction, this thesis is aimed at understanding the con-

nections of black hole physics with number theory. To do so, we first systematically

study automorphic forms.

1. We begin with the classical theory of modular forms for SL2(Z). We discuss

modular forms of integral weight for SL2(Z) and its subgroups with examples

in detail. We refer the reader to [4] for the proofs of the Theorems recorded

without proof. Towards the end, we describe the need for defining modular

forms of half integral weight by introducing some examples without going

into the details which do not play any role in our investigation.
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2. We then discuss the theory of harmonic Maass forms and mock modular

forms in detail with examples.

3. We then discuss Jacobi forms in detail with a plethora of examples. We

briefly discuss Siegel modular forms relevant to our analysis.

4. We then study the theory of class groups from the quadratic forms side,

briefly discussing Dirichlet composition and Bhargava cubes.

5. Finally we examine the connections mentioned in the introduction. Explicitly

we try to understand the following Theorem by G.W. Moore.

Theorem 1.1 (Moore). If D < 0 is a fundamental discriminant, then the U-

duality equivalence classes of attractor black holes of entropy S = π
√
−D admit a

structure as a finite abelian group. Moreover, this group is isomorphic to the class

group C(D).

This Theorem gives rise to several questions as to the interpretation of the group

composition law on the black hole side. To be explicit, we list the questions posed

in [13].

Questions 1.2. (i) Is there a natural physical interpretation of the group law

described in Theorem 1.1 in terms of attractor black holes?

(ii) Is there a distinguished physical property of the identity class black hole,

which corresponds to the class represented by the identity element 1D?

(iii) Is there a physical interpretation of inverse black hole?

(iv) What is the physical interpretation of the order of a black hole corresponding

to the order of an element in the class group?

1.4 Contributions of this thesis

In this thesis, apart from explicitly mentioning the mathematical content of black

hole physics rigorously, we also provide proofs of some of the results which are

know to physicists and mathematicians but have not been written down explicitly
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in the literature. To be precise, we provide the proof of the following Theorems in

this thesis.

Theorem 1.3. The Fourier expansion of Z(Ω) = 1
Φ10(Ω)

is of the form

Z(Ω) =
∑

m,n≥−1
r∈Z

g(m, r, n)qnζrwm (1.1)

where Φ10 is the Igusa cusp form.

Theorem 1.4. Z(Ω) has Fourier-Jacobi expansion of the form

Z(Ω) =
∑
m≥−1

ψm(τ, z)wm (1.2)

where ψm are meromorphic Jacobi forms of weight −10 and index m.

Theorem 1.5. The degeneracy of a black hole microstate remains invariant in its

U−duality equivalence class.

Theorem 1.6. The degeneracy of a black hole U−duality equivalence class and

its inverse class under Moore’s identification are the same.

Apart from these known results, we have made an attempt to prove a negative

result. We have shown that degeneracy of black hole microstates is not a good

quantity to study if we want to characterise U−duality equivalence classes. Pre-

cisely, we show that degeneracy does not recognize the class group composition of

black hole classes. Towards the end, we attempt to give a definition of the identity

black hole class using the asymptotic entropy upto first order linear correction.

We also prove the compatibility of the definition with respect to the class group

composition.

Definition 1.7. Let D < 0 be a fundamental discriminant. Consider the class

group of U−duality equivalence classes of attractor black holes with leading en-

tropy S = π
√
−D. The equivalence class with entropy upto leading correction
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given by

Sid = π
√
−D −

ln
(∣∣g ( 2i√

−D

) ∣∣2 412

D6

)
if D ≡ 0(mod 4)

ln
(∣∣g ( 4i

i+
√
−D

) ∣∣2 (16D)6

(1−D)12

)
if D ≡ 1(mod 4)

is the identity class of the class group. Here g(τ) = η(τ)24.



2. IMPORTANT THEOREMS AND

DEFINITIONS

We write z ∈ C as z = x + iy to denote a complex number with x, y ∈ R. We

denote by H, the upper half plane which is the set

H := {z ∈ C : y > 0}.

We will often use the following Theorem to show holomorphicity of functions:

Theorem 2.1. If {fn}∞n=1 is a sequence of holomorphic functions that converges

uniformly to a function f in every compact subset of a domain Ω, then f is holo-

morphic in Ω.

Theorem 2.2. (Identity Theorem) Let f and g be two holomorphic functions on

a domain Ω. Suppose f = g on a subset S ⊂ Ω which has a limit point in Ω then

f = g on Ω.

We will use the Poisson summation formula. To state the result, we first make

some definitions.

Definition 2.3. Let f : R −→ C be a smooth function. We define the Schwartz

space S as the set of smooth functions f such that for every pair of integers

m,n ≥ 0,

supx∈R|xmf (n)(x)| <∞.

Definition 2.4. For f ∈ S, we define the Fourier transform f̂ by setting

f̂ =

∞∫
−∞

f(t)e−2πitxdt.
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Theorem 2.5. (Poisson summation formula) Let f ∈ S. Then∑
n∈Z

f(n) =
∑
n∈Z

f̂(n).

Let us define the Jacobi symbol in terms of the usual Legendre symbol. Let d be

an odd integer and c be any integer. Then the Jacobi symbol
(
c
d

)
is defined as

follows:

( c
d

)
=



(
c
d

)
if d is odd positive prime∏

j

(
c
pj

)
if 0 < d =

∏
j pj, pj – odd primes(

c
|d|

)
if d < 0, c > 0

−
(
c
|d|

)
if d < 0, c < 0

0 if gcd(c, d) > 1.

Definition 2.6. A Dirichlet character modulo N is a homomorphism χ : (Z/NZ)× −→
C×. This implies χ(1) = 1.

Theorem 2.7. The set of all Dirichlet characters modulo N forms a group of

order φ(N) where φ is the Euler’s totient function.



3. CLASSICAL MODULAR FORMS

3.1 Modular forms of integral weight

Modular forms are holomorphic functions on the upper half plane satisfying a

certain modularity condition with respect to some matrix group along with growth

conditions at some specific points of the real axis of the complex plane. We will

make this precise in later sections. We mainly follow [4] in this chapter.

3.1.1 The Setup

Let R be a commutative ring with identity. Define

GL2(R) :=

{(
a b

c d

)
: a, b, c, d ∈ R, ad− bc ∈ R× := R \ {0}

}

and

SL2(R) :=

{(
a b

c d

)
∈ GL2(R) : ad− bc = 1

}
.

It is easy to check that these are groups under matrix multiplication. We denote

by GL+
2 (R), the The group of invertible 2 × 2 matrices with entries in R with

positive determinant. SL2(Z) is called the full modular group. The group SL2(Z)

acts on H via the following action. For γ =

(
a b

c d

)
∈ SL2(Z) and z ∈ H, define

γ(z) :=
az + b

cz + d
. (3.1)
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It is easy to check that

Im(γ(z)) =
(ad− bc)Im(z)

|cz + d|2
. (3.2)

Hence if det(γ) = ad−bc > 0 then γ maps H to H. In particular, when γ ∈ SL2(Z)

then

Im(γ(z)) =
Im(z)

|cz + d|2
. (3.3)

Remark 3.1. If γ = λ

(
1 0

0 1

)
∈ GL+

2 (R) (λ 6= 0) then γ(z) = z. Similarly

±I ∈ SL2(Z) acts trivially on H. Hence sometimes PSL2(Z) := SL2(Z)/{±I} is

called the modular group.

We now establish some properties of the full modular group.

Lemma 3.2. SL2(Z) is generated by S =

(
0 −1

1 0

)
and T =

(
1 1

0 1

)
.

Proof. First observe that T n =

(
1 n

0 1

)
and S2 = −I for n ∈ Z. Now for γ =(

a b

c d

)
∈ SL2(Z),

T n

(
a b

c d

)
=

(
a+ cn b+ dn

c d

)
and S

(
a b

c d

)
=

(
−c −d
a b

)
.

We now break the analysis in two cases.

(i) Case 1. c = 0

Since γ =

(
a b

0 d

)
∈ SL2(Z), we must have ad = 1 which gives a = d = ±1.

Thus γ = ±

(
1 b′

0 1

)
= ±T b′ .

(ii) Case 2. c 6= 0

Without loss of generality, we can assume that |a| ≥ |c|. If this is not the
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case then apply S and exchange the row a negative sign. Then apply division

algorithm,

a = qc+ r, 0 ≤ r < |c|.

Since r < |c|, we can apply S to maintain |a′| ≥ |c|. Continuing in this way,

we get to case 1.

Remark 3.3. (i) SL2(Z) is also generated by finite order elements S and ST

(ST has order 6).

(ii) SL2(Z) is also generated by infinite order elements T and U =

(
1 0

1 1

)
.

(iii) If ϕ : SL2(Z)→ C× is a homomorphism then it takes values in the subgroup

of the 12th roots of unity.

Definition 3.4. Let N ≥ 1. Define

Γ(N) :=

{(
a b

c d

)
∈ SL2(Z) :

(
a b

c d

)
≡

(
1 0

0 1

)
(mod N)

}
.

This is called the principle congruence subgroup of level N.

Note that Γ(N) is a subgroup of SL2(Z) and Γ(1) = SL2(Z).

Theorem 3.5. Consider the natural map π : SL2(Z)→ SL2(Z/NZ),(
a b

c d

)
7→

(
a b

c d

)
(mod N). Then π is a surjective homomorphism.

It is easy to see that kernel of the map π in above fact is precisely Γ(N). Thus

Γ(N) / SL2(Z).

Following cardinality relations follow from the first isomorphism Theorem.

(i) |GL2(Z/pZ)| = (p2 − 1)(p2 − p)

(ii) |SL2(Z/pZ)| = p(p2 − 1)

(iii) |SL2(Z/pnZ)| = p3n−2(p2 − 1).
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Here p is a prime.

Theorem 3.6. (Chinese remainder Theorem) Let N =
∏

pα‖N p
α, then Z/NZ ∼=

⊗(Z/pαZ).

Using this Theorem we can show that |SL2(Z/NZ)| = N3
∏

p|N

(
1− 1

p2

)
.

Definition 3.7. Let Γ be a subgroup of SL2(Z). Then Γ is called a conguence

subgroup if Γ(N) ⊂ Γ for some N .

Remark 3.8. (i) If N ′ = kN for some k ∈ Z then Γ(N ′) ⊂ Γ. Thus the

smallest such N is called the level of Γ.

(ii) Using first isomorphism Theorem,

SL2(Z)

Γ(N)
∼= SL2(Z/NZ)

Thus the index [SL2(Z) : Γ(N)] = N3
∏

p|N

(
1− 1

p2

)
< ∞. Thus every

conguence subgroup of SL2(Z) is of finite index.

Define

Γ0(N) :=

{(
a b

c d

)
∈ SL2(Z) : c ≡ 0 (mod N)

}
.

Clearly Γ(N) ⊂ Γ0(N). Thus Γ0(N) is a conguence subgroup.

Consider the map π0 : Γ0(N)→ (Z/NZ)×,

(
a b

c d

)
7→ d (mod N). Then

Ker(π0) =

{(
a b

c d

)
∈ SL2(Z) : c ≡ 0(mod N)

a ≡ d ≡ 1(mod N)

}

Define Γ1(N) := Ker(π0). Then we have another map π1 : Γ1(N)→ Z/NZ given

by

(
a b

c d

)
7→ b (mod N).

Theorem 3.9. The maps π0 and π1 are surjective homomorphisms.
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It is easy to observe that Ker(π1) = Γ(N). Thus we have the following contain-

ments.

Γ(N) ⊂ Γ1︸ ︷︷ ︸
index N

(N ) ⊂ Γ0(N) ⊂ S︸ ︷︷ ︸
finite index

L2(Z)

The subgroups Γ0(N) and Γ1(N) are called Hecke subgroups and they have finite

index in SL2(Z).

Definition 3.10. Given Γ ≤ SL2(Z), a subset F ⊂ H is called a fundamental

domain for Γ if F is closed with connected interior such that,

(i) Every point z ∈ H is Γ−equivalent to a point of F (i.e. ∃ γ ∈ Γ & z′ ∈ F
such that γ(z) = z′).

(ii) No two points in the interior of F are Γ−equivalent.

Let Γ∞ =

{(
1 n

0 1

)
∈ SL2(Z) : n ∈ Z

}
. A fundamental domain for Γ∞ is

given by

F =

{
z ∈ H : −1

2
≤ Re(z) ≤ 1

2

}
.

Theorem 3.11. The set F =
{
z ∈ H : |Re(z)| ≤ 1

2
, |z| ≥ 1

}
is a fundamental

domain for Γ = SL2(Z). This is called the standard fundamental domain.

We define the action of GL2(C) on Ĉ = C ∪ {i∞} as follows. For γ =

(
a b

c d

)
∈

GL2(C) define

γ(z) =


az+b
cz+d

if z ∈ C \ {−d/c}

∞ if z = −d/c
a
c

if z = i∞

The action on i∞ is defined in the limiting sense. More precisely,

γ(∞) := lim
ω→0

a(1/ω) + b

c(1/ω) + d
=
a

c

Definition 3.12. The set H∪Q∪{i∞} is called the extended upper half plane and

the set Q∪{i∞} is called the set of cusps of SL2(Z) and its congruence subgroups.
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Lemma 3.13. Every cusp is SL2(Z)−equivalent to i∞.

In later sections, we will see that, we require functions to satisfy a cusp condition

at every inequivalent cusp for them to be a modular form. In that case, we must

make sure that the subgroup with respect to which we impose modularity condition

must have finitely many inequivalent cusps. Next Lemma gives a condition on such

subgroups.

Lemma 3.14. Let Γ be a finite index subgroup of SL2(Z). Then the number of

Γ−inequivalent cusps of Γ is atmost [SL2(Z) : Γ].

Definition 3.15. (Slash/Stroke operator). Let H(Ω) denote the space of holo-

morphic functions on some domain Ω. The Slash/Stroke operator of weight k ∈ 1
2
Z

is defined as follows.

|k : H(Ω)× SL2(Z)→ H(Ω), (f, γ) 7→ (f |kγ)

(f |kγ)(z) = J(γ, z)f(γ(z))

where J(γ, z) is some function called automorphy factor.

Proposition 3.16. If |k is a stroke operator and J(γ, z) an automorphy factor

then we have

(f |kγ1γ2) = (f |kγ1)|kγ2 and J(γ1γ2, z) = J(k, γ1, γ2z)J(γ2, z).

Example 3.17. For γ =

(
a b

c d

)
, the function J(k, γ, z) = (cz + d)−k for k ∈ Z

and γ ∈ SL2(Z), and J(k, γ, z) =
(
c
d

)
εd(
√
cz + d)−2k for k ∈ 1

2
Z\Z and γ ∈ Γ0(4)

are automorphy factors, where
(
c
d

)
is the Jacobi symbol and

εd =

1 if d ≡ 1 (mod 4)

i if d ≡ −1 (mod 4)

.

Definition 3.18. Let Γ be a congruence subgroup of SL2(Z). A map ν : Γ −→ S1

is called a multiplier system for Γ of weight k if

(i) ν is a homomorphism.
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(ii) If −I ∈ Γ then ν(−I) = (−1)k.

Remark 3.19. The condition f |kγ = ν(γ)f is called the modularity condition.

In particular for J(γ, z) = (cz + d)−k, k ∈ Z, and trivial multiplier system, the

modularity condition reduces to

f

(
az + b

cz + d

)
= (cz + d)kf(z).

3.1.2 Definition and Examples

We now define modular forms on SL2(Z) of integral weight.

Definition 3.20. A function f : H→ C is called a modular form of weight k ∈ Z
on SL2(Z) if

(i) f is holomorphic.

(ii) f
(
az+b
cz+d

)
= (cz + d)kf(z) for all

(
a b

c d

)
∈ SL2(Z) and z ∈ H.

(iii) f(z) is bounded as z → i∞ (cusp condition).

Remark 3.21. The modularity condition (ii) in above definition is equivalent to

checking the condition for S =

(
0 −1

1 0

)
and T =

(
1 1

1 0

)
as S and T generates

SL2(Z) by Lemma 3.2. Thus we just have to check that

f(z + 1) = f(z) f

(
−1

z

)
= zkf(z).

The third condition along with the modularity condition f(z + 1) = f(z) in the

definition can be used to prove the following Theorem.

Theorem 3.22. If f is a modular form on SL2(Z), then f has an expansion of

the form

f(z) =
∞∑
n=0

anq
n
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where q = e2πiz and an ∈ C ∀ n ∈ N. This is called the Fourier expansion of f .

If a0 = 0, then f is called a cusp form. In this case we say that f vanishes at i∞.

Notations 3.23. The space of all weight-k modular forms on SL2(Z) forms a

vector space and is denoted by Mk(SL2(Z)). So does the space of weight k cusp

forms and is denoted by Sk(SL2(Z)).

We now look at one particular example, the Eisenstein series.

Definition 3.24. Define

Gk(z) =
∑

(m,n)∈Z2\{(0,0)}

1

(mz + n)k
k ≥ 4, even.

This formal sum is called the Eisenstein series of weight k.

Theorem 3.25. Gk(z) converges absolutely and uniformly on compact subsets of

H and hence defines a holomorphic function on H. Moreover

Gk(z + 1) = Gk(z) Gk

(
−1

z

)
= zkGk(z).

The next Theorem gives the Fourier expansion of Gk(z).

Theorem 3.26. For even k ≥ 4,

Gk(z) = 2ζ(k) +
2(−2πi)k

(k − 1)!

∞∑
n=1

σk−1(n)qn

where σk−1(n) =
∑
d|n
d≥1

dk−1 and ζ(z) is the Riemann zeta function.

We can define the normalised Eisenstein series by making the constant term in

the above Fourier expansion 1. We define

Ek(z) =
Gk(z)

2ζ(k)
.

Its Fourier expansion is

Ek(z) = 1− 2k

Bk

∞∑
n=1

σk−1(n)qn
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where Bk are Bernoulli numbers defined by

x

ex − 1
=
∞∑
k=0

Bk
xk

k!
.

Remark 3.27. Observe that for k odd, Ek(z) vanishes identically since for every

pair (m,n) there is a pair (−m,−n). These two terms cancel because k is odd.

Put

E2(z) = 1− 2k

Bk

∞∑
n=1

σ1(n)qn.

E2(z) does not satisfy the modularity condition. Rather it satisfies modularity

with an additional term. This is an example of what are called quasimodular

forms.

Theorem 3.28. We have

E2

(
aτ + b

cτ + d

)
= (cτ + d)2E2(τ) +

6c(cτ + d)

πi
, ∀

(
a b

c d

)
∈ SL2(Z).

The modularity condition puts a strong restriction on functions. In particular, a

modular form is completely determined by the values it takes in the fundamental

domain. As a result of this, the multiplicities of the zeros of a modular form in

the fundamental domain satisfies a relation called the valence formula. We will

not go into the details of the valence formula but just list the conclusions which

are important.

Theorem 3.29. (i) M0(SL2(Z)) = C.

(ii) Mk(SL2(Z)) = {0} for k < 0 and k = 2.

(iii) E4(z) and E6(z) has a simple zero at z = e
iπ
3 and z = i respectively.

(iv) Sk(SL2(Z)) = {0} for k ≤ 10.

(v) Mk(SL2(Z)) = CEk for 4 ≤ k ≤ 10.
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It turns out that Mk(SL2(Z)) and Sk(SL2(Z)) are finite dimensional vector spaces.

We have a nice dimension formula for these spaces. We can also construct basis

for these spaces.

Theorem 3.30. For k ≥ 0,

dimMk(SL2(Z)) =


⌊
k
12

⌋
if k ≡ 2(mod 12)⌊

k
12

⌋
+ 1 if k 6≡ 2(mod 12)

and for k ≥ 4,

dimSk(SL2(Z)) =


⌊
k
12

⌋
− 1 if k ≡ 2(mod 12)⌊

k
12

⌋
if k 6≡ 2(mod 12).

Moreover the set {Eα
4E

β
6 : 4α + 6β = k, α, β ∈ Z, α, β ≥ 0} forms a basis for

Mk(SL2(Z)).

3.1.3 The j−function

By Theorem 3.29 (i), there are no non-trivial modular forms of weight 0. But if we

relax the holomorphicity condition, then we can construct modular forms of weight

0. Such functions will be called modular functions. Let us define it precisely.

Definition 3.31. A modular function with respect to Γ, a congruence subgroup

of SL2(Z), is a meromorphic function f : H→ C which satisfies

f

(
az + b

cz + d

)
= f(z), ∀

(
a b

c d

)
∈ Γ

and is meromorphic at all Γ−inequivalent cusps of Γ.

Given any modular form f , we can construct a modular function using next The-

orem.

Theorem 3.32. Let f ∈Mk(SL2(Z)). Then yk|f(z)|2 is a modular function with

respect to SL2(Z) where z = x+ iy.
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We can characterise modular functions completely in terms of the j−function.

Define the j-function by j = E3
4/∆. Clearly

j

(
az + b

cz + d

)
= j(z), ∀

(
a b

c d

)
∈ SL2(Z)

Moreover j has a simple pole at i∞ since ∆(i∞) = 0. Thus j is a modular function

with respect to SL2(Z). We have the following Theorem.

Theorem 3.33. Let f be a meromorphic function on H. The following are equiv-

alent:

1. f is a modular function with respect to SL2(Z).

2. f is a quotient of two modular forms with respect to SL2(Z) of the same

weight.

3. f is a rational function of j.

3.1.4 Modular forms of higher level

We would now like to consider functions which satisfy modularity with respect to

a congruence subgroup of SL2(Z).

Theorem 3.34. Let Γ be a congruence subgroup of SL2(Z) of level N . If f satisfies

modularity with respect to Γ then f has a Fourier expansion of the form

f(z) =
∞∑

n=−∞

anq
n
h .

at i∞ where qh = e2πiz/h and h is an integer specific to Γ. This is called the Fourier

expansion of f at i∞.

Theorem 3.35. If s is a cusp Γ−inequivalent to i∞ then (f |kγ)(z) has Fourier

expansion of the form

(f |kγ)(z) =
∞∑

n=−∞

bnq
n
h
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where γ ∈ SL2(Z) is such that γ(i∞) = s. This series is called the Fourier

expansion of f at s.

f is said to be holomorphic at a cusp i∞ if the Fourier coefficient an = 0 for

n < 0 in the above Fourier expansion. Holomorphicity at any other cusp is defined

similarly.

Definition 3.36. A modular form of weight k for Γ is a holomorphic function

f : H → C that satisfies modularity property for Γ and is holomorphic at every

cusp. The space is denoted by Mk(Γ). If f vanishes at all cusps then f is called a

cusp form. The space of cusp forms is denoted by Sk(Γ).

The first examples are again the Eisenstein series.

Definition 3.37. Let k ≥ 3, N ∈ N and g ∈ (Z/NZ)2. Define the Eisenstein

series by

Gk,g(z) =
∑

(m,n)≡g(mod N)
(m,n)6=(0,0)

1

(mz + n)k
, z ∈ H.

Again we can check all properties of modular forms for Γ(N) and conclude Gk,g ∈
Mk(Γ(N)).

Theorem 3.38. The Fourier expansion of Gk,g(z) is given by Gk,g(z) = bk,g(0) +
∞∑
n=1

bk,g(n)qnN where

bk,g(0) =


0 if a1 6≡ 0(mod N)∑
m≡a2(mod N)

m−k if a1 ≡ 0(mod N)

and

bk,g(n) =
(−2πi)k

Nk(k − 1)!

∑
d|n

(n/d)≡a1(mod N)

dk

|d|
e2πia2d/N

where summation is over all divisors (+ve as well as −ve) of n, and g = (a1, a2).

We now have the following facts.
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Theorem 3.39. 1. Let f ∈ Mk(Γ) with Γ a congruence subgroup of SL2(Z).

Let α ∈ GL+
2 (Q). Then f |α is holomorphic at every cusp s ∈ Q ∪ {i∞}.

2. Let f ∈ Sk(Γ) with Γ a congruence subgroup of SL2(Z). Let α ∈ GL+
2 (Q).

Then f |α vanishes at every cusp s ∈ Q ∪ {i∞}.

Theorem 3.40. Let f(z) ∈Mk(Γ1(N)) and suppose r is a positive integer. Then

f(rz) ∈Mk(Γ1(rN)). Moreover if f(z) is a cusp form, then so is f(rz).

Proof. Using the stroke operator for

(
r 0

0 1

)
, we have f(rz) = r−k/2f(z)

∣∣∣∣
(
r 0

0 1

)
.

Now, the cusp condition follow from above two facts. To prove modularity, observe

that for any

(
a b

c d

)
∈ Γ1(rN),

(
f(z)

∣∣∣∣
(
r 0

0 1

))∣∣∣∣
(
a b

c d

)
= f(z)

∣∣∣∣
(
ra rb

c d

)
=

(
f(z)

∣∣∣∣
(
a br

c/r d

))∣∣∣∣
(
r 0

0 1

)

Since rN |c, we see that

(
a br

c/r d

)
∈ Γ1(N). Hence

(
f(z)

∣∣∣∣
(
a br

c/r d

))∣∣∣∣
(
r 0

0 1

)
= f(z)

∣∣∣∣
(
r 0

0 1

)
.

We conclude that f(rz) ∈Mk(Γ1(rN)).

Here also we have valence and dimension formula which uses Riemann surface

theory for its proof but we will not discuss it here.

3.1.5 Modular forms with Nebentypus

Let Γ be a congruence subgroup of SL2(Z) and χ be a dirichlet character modulo

N . We have the following proposition.

Proposition 3.41. For γ =

(
a b

c d

)
∈ Γ, define ψ(γ) = χ(d). Then ψ(γ1γ2) =

ψ(γ1)ψ(γ2).
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Thus we can modify the modularity condition in remark 3.19 by replacing the

multiplier system with ψ(γ). Thus we can define the space Mk(Γ, χ) of modular

form with Nebentypus χ as follows:

Mk(Γ, χ) :=

{
f ∈Mk(Γ) : f |kγ = χ(d)f, ∀

(
a b

c d

)
∈ Γ

}
.

Remark 3.42. If we allow f to have pole at cusps, then f is called a weakly

holomorphic modular forms. The space of all weakly holomorphic modular forms

of weight k with respect to a congruence subgroup Γ is denoted by M !
k(Γ).

3.2 Modular forms of half integral weight

Consider the second automorphy factor in Example 3.17. The automorphy factor

indicates some kind of half integral transformation. We will now prove that the

classical theta function is modular with that automorphy factor.

3.2.1 The classical theta function

Define the classical theta function by

Θ(z) :=
∑
n∈Z

qn
2

; z ∈ H, q = e2πiz.

We will prove that the theta function satisfies the following transformation prop-

erty:

Θ(γz) = J(γ, z)Θ(z), ∀ γ =

(
a b

c d

)
∈ Γ0(4)

where J(γ, z) =
( c
d

)
ε−1
d

√
cz + d.

We will follow [27] for the proof of this Theorem.

Theorem 3.43. The theta function Θ(z) defines a holomorphic function on H.
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Proof. Let Ω be any compact subset of H. Then there exists some T > 0 such

that Im(z) < T for every z ∈ Ω for some T . Now for z = x+ iy,

|qn2| = |e2πixn2||e−2πyn2 | ≤ |e−2πyn|.

Let y0 = sup
z∈Ω

y. Then this minimum exists and is positive since the minimum

function is continuous and the domain is compact. Then we have that |e−2πyn| ≤
|e−2πy0n| with |e−2πy0| < 1. Put Mn = |e−2πy0n|. Then the series

∞∑
n=0

Mn <∞ as it

is just the geometric series. Now observe that

Θ(z) =
∑
n∈Z

qn
2

= 2
∞∑
n=0

qn
2 − 1.

Thus by Weiratrass M test, theta function converges uniformly and absolutely on

compact subset Ω of H and hence defines a holomorphic function on H.

We will now prove the transformation of the theta function. The following Lemma

will be used in the proof.

Lemma 3.44. Let f(t) = e−(t+α)2π/y where α ∈ R, y > 0. Then its Fourier

transform f̂(u) =
√
ye−π(u2y−2iα

√
yu).

Then by Poisson summation formula we have∑
n∈Z

e−(n+α)2π/y =
√
y
∑
n∈Z

e−π(n2y−2iαn). (3.4)

Let us define Θ̃(z) = Θ(z/2) =
∑
n∈Z

eπin
2z. Then it is easy to see that

Θ̃(z + 2) = Θ̃(z). (3.5)

Moreover (3.4) for α = 0 gives∑
n∈Z

e−n
2π/y =

√
y
∑
n∈Z

e−πn
2y. (3.6)
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Then for z = iy, y > 0, (3.6) gives

Θ̃(−1/z) =
√
−izΘ̃(z) (3.7)

where
√

is the usual branch positive on positive reals R+. Thus by Identity

Theorem, (3.7) holds for every z ∈ H. Equations (3.5) and (3.7) gives us the

transformation of Θ̃(z) under the group generated by

(
1 2

0 1

)
and

(
0 −1

1 0

)
.

But we need a general transformation formula for

(
a b

c d

)
∈ SL2(Z) with a, d ≡

0(mod 2). We will deal with c > 0. c < 0 is dealt with similarly. Observe that

Θ̃

(
az + b

cz + d

)
= Θ̃

(
a

c
− 1

c(cz + d)

)
=

∞∑
n=−∞

eπin
2(ac−

1
c(cz+d)).

We can break this sum modulo c by substituting n = tc+m and summing t over

Z and 0 ≤ m ≤ c− 1. We get

Θ̃

(
az + b

cz + d

)
=

c−1∑
m=0

∞∑
t=−∞

eπi(tc+m)2a/ce−πi(tc+m)2( 1
c(cz+d))

=
c−1∑
m=0

eπim
2a/c

∞∑
t=−∞

e−πi(t+
m
c )

2
( c
cz+d).

Using (3.4), we have that∑
n∈Z

e−iπ(n+α)2/z =
√
z/i
∑
n∈Z

eiπ(n2z+2αn). (3.8)

for z = iy. Thus by Identity Theorem (3.8) holds for every z ∈ H. Using (3.8) for

α = m/c and z = (cz + d)/c, we get

Θ̃

(
az + b

cz + d

)
= (ic)−1/2(cz + d)1/2

c−1∑
m=0

eπim
2a/c

∞∑
ν=−∞

e2πimν
c

+iν2π(z+ d
c ). (3.9)
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Put ∑
:=

c−1∑
m=0

eiπm
2a/c+2πimν/c =

c−1∑
m=0

e
2πi

(
αm2+mν

c

)

where a = 2α. Now since ad− bc = 1, thus 2αd ≡ 1(mod c) and c is odd. Thus if

α denotes the inverse of α in Z/cZ that is αα ≡ 1(mod c), then we can substitute

m = rα. This is because gcd(α, c) = 1 which implies mα would run over the same

indices as m. Since r ≡ mα(mod c), thus r runs over same indices as m. We get

∑
=

c−1∑
r=0

e
2πi

(
α(r2+rν)

c

)
=

c−1∑
r=0

e
2πi

(
α(r+2ν)2−α4ν2

c

)

since α(r + 2ν)2 − α4ν2 = α(r2 + 22νr) ≡ α(r2 + νr)(mod c). This gives

∑
= e

2πi
(
−α4ν2
c

) c−1∑
r=0

e
2πi

(
α(r+2ν)2

c

)
= e

2πi
(
−α4ν2
c

) c−1∑
r=0

e
2πi

(
αr2

c

)

= e
2πi

(
−α4ν2
c

)
β(α, c)

where β(α, c) =
c−1∑
r=0

e
2πi

(
αr2

c

)
is a Gauss sum. Substituting in (3.9), we get

Θ̃

(
az + b

cz + d

)
= (ic)−1/2(cz + d)1/2β(α, c)

∞∑
ν=−∞

eπiν
2ze

2πi
(
− ν

2

c (α4− d
2)

)

= (ic)−1/2(cz + d)1/2β(α, c)
∞∑

ν=−∞

eπiν
2ze

2πi
(
ν2

c
(2d−α4)

)
.

But

2αd ≡ 1(mod c) =⇒ 2ααd ≡ α(mod c)

=⇒ 42d ≡ 4α(mod c)

=⇒ 2d ≡ 4α(mod c)

=⇒ 2d− 4α ≡ 0(mod c).
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Thus we get

Θ̃

(
az + b

cz + d

)
= (ic)−1/2(cz + d)1/2β(α, c)

∞∑
ν=−∞

eπiν
2z

= (ic)−1/2(cz + d)1/2β(α, c)Θ̃(z).

We need to calculate β(α, c). Define

G(a, b, c) =
c−1∑
n=0

e
2πi

(
an2+bn

c

)
.

Then β(α, c) = G(α, 0, c). We have the following Theorem (Theorem 1.5.2 of [21]):

Theorem 3.45. For gcd(a, c) = 1, we have

G(a, c) = G(a, 0, c) =


0 if c ≡ 2(mod 4)

εc
√
c
(
a
c

)
if c is odd

(1 + i)ε−1
a

√
c
(
c
a

)
a is odd, 4|c.

Since gcd(α, c) = 1, so gcd(α, c) = 1 and c is odd, so β(α, c) = εc
√
c
(
α
c

)
. But

α ≡ 2d(mod c), so
(
α
c

)
=
(

2d
c

)
. Hence β(α, c) = εc

√
c
(

2d
c

)
. So we get

Θ̃

(
az + b

cz + d

)
= (ic)−1/2(cz + d)1/2εc

√
c

(
2d

c

)
Θ̃(z).

Making the transformation z 7→ −1/z, we get

Θ̃

(
bz − a
dz − c

)
= (ic)−1/2 (dz − c)1/2

√
z

εc
√
c

(
2d

c

)
Θ̃(−1/z)

= (ic)−1/2 (dz − c)1/2

√
z

εc
√
c

(
2d

c

)√
−izΘ̃(z)

where we used (3.7). Put b = a′, a = −b′, c = −d′ and d = c′. With this change

we have

Θ̃

(
a′z + b′

c′z + d′

)
= (−id′)−1/2(c′z + d′)1/2ε−d′

√
−d′

(
2c′

−d′

)√
−iΘ̃(z).
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It can easily be checked that ε−d = iε−1
d . This gives

Θ̃

(
a′z + b′

c′z + d′

)
= (c′z + d′)1/2ε−1

d′

(
2c′

d′

)
Θ̃(z)

Thus we finally have

Θ̃

(
az + b

cz + d

)
= (cz + d)1/2ε−1

d

(
2c

d

)
Θ̃(z)

where

(
a b

c d

)
∈ SL2(Z) and b, c ≡ 0(mod 2). Now since Θ(z) = Θ̃(2z), thus we

get for γ =

(
a b

c d

)
∈ SL2(Z) and b, c ≡ 0(mod 2),

Θ(γz) = Θ̃(γ(2z)) = Θ̃

(
2az + b

2cz + d

)
= (2cz + d)1/2ε−1

d

(
2c

d

)
Θ̃(2z)

= (2cz + d)1/2ε−1
d

(
2c

d

)
Θ(z).

Thus for γ =

(
a b/2

2c d

)
∈ SL2(Z) with b, c ≡ 0(mod 2), we get

Θ(γz) = (2cz + d)1/2ε−1
d

(
2c

d

)
Θ(z).

Thus this gives

Θ(γz) = J(γ, z)Θ(z), ∀ γ =

(
a b

c d

)
∈ Γ0(4)

where J(γ, z) =
( c
d

)
ε−1
d

√
cz + d.
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3.2.2 The Dedekind Eta function

Define the Dedekind eta function η : H −→ C by

η(τ) = q
1
24

∞∏
n=1

(1− qn); q = e2πiτ .

We will first show that the infinite product on the right hand side converges ab-

solutely and uniformly on compact subsets of H. Thus Theorem 15.6 of [22] will

imply that η(τ) defines a holomorphic function. Indeed for fn(τ) = 1 − qn, we

have that
∞∑
n=0

|1− fn| =
∞∑
n=0

|q|n.

Since τ ∈ H, thus |q| = |e−2πy| < 1 where τ = x + iy. Thus the series
∑
|q|n

converges being a geometric series. Thus Theorem 15.6 of [22] implies that η(τ) is

holomorphic on H.

Using Poisson summation formula, one can prove the following transformation

property of the Dedekind eta function [4].

Theorem 3.46. For τ ∈ H, we have

η(τ + 1) = e
πi
12η(τ) and η

(
−1

τ

)
=

√
τ

i
η(τ)

where
√

denotes the branch of square root in which
√
τ > 0 if τ > 0.

With this transformation property one can prove the following:

Theorem 3.47. For γ =

(
a b

c d

)
∈ SL2(Z), we have

η

(
aτ + b

cτ + d

)
= νη(γ)(cτ + d)1/2η(τ)

where νη(γ)24 = 1 and νη(γ1γ2) = ±νη(γ1)νη(γ2). νη is a multiplier system for

SL2(Z) and ν2
η : SL2(Z) −→ C× is a character of order 12.
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This Theorem shows that η2k(τ) ∈ Mk(SL2(Z), ν2k
η ) if we could take care of the

Fourier expansion (next Theorem). In particular we have

η(τ)24 = q
∞∏
n=1

(1− qn)24 = ∆(τ) ∈ S12(SL2(Z)).

Theorem 3.48. (Euler)

η(τ) =
∑
n≥1

(
−12

n

)
qn

2/24; η(τ)3 =
∑
n≥1

(
−4

n

)
nqn

2/8

where (
−12

n

)
=


1 if n ≡ ±1 (mod 12)

−1 if n ≡ ±1 (mod 12)

0 if gcd(n, 12) > 1

(
−4

n

)
=

±1 if n ≡ ±1 (mod 4)

0 if n ≡ 0 (mod 2).

These two examples give us automorphy factors to define modular forms of half

integral weight. The precise theory of half integral modular forms is a bit compli-

cated and we skip it for now. The reader is referred to [5] for details. We end this

chapter with the a discussion of Eisenstein series. Put

Γ∞ =

{
±

(
1 n

0 1

)
∈ SL2(Z) : n ∈ Z

}
.

We say that γ1 and γ2 are related if γ1 = γγ2 for some γ ∈ Γ∞. Denote the set of

right cosets of Γ∞ in Γ0(4) by Γ∞ \ Γ0(4).

Definition 3.49. Let k ≥ 5 be an odd integer. Put

Ek/2(z) =
∑

γ∈Γ∞\Γ0(4)

J(γ, z)−k, Fk/2 = (2z)k/2Ek/2

(
− 1

4z

)
.

Then Ek/2 is called Eisenstein series and Fk/2 is called Eisenstein series associated
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to Ek/2.

It can be proved that Ek/2, Fk/2 ∈Mk/2(Γ0(4)).

Theorem 3.50. The Fourier expansion of Fk/2 has the form Fk/2(z) =
∞∑
l=0

blq
l

where

bl =
πk/2

Γ(k
2
)eπik/4

lk/2−1
∑

n>0,odd

εknn
−k/2

∑
0≤j<n

(
j

n

)
e−2πilj/n.

and Γ(z) is the gamma function.



4. HARMONIC MAASS FORMS AND

MOCK MODULAR FORMS

The forms which we have studied till now have been assumed to be holomorphic.

We now further relax the holomorphicity condition on the functions and assume

them to be smooth in real sense with some additional conditions. This leads to

new kinds of modular forms. We follow [6] for this chapter.

4.1 Definition

Define the hyperbolic Laplacian. Define the weight-k (∈ R) hyperbolic Laplacian

∆k := −v2

(
∂2

∂u2
+

∂2

∂v2

)
+ ikv

(
∂

∂u
+ i

∂

∂v

)
= −4v2 ∂

∂τ

∂

∂τ̄
+ 2ikv

∂

∂τ̄
.

where τ = u+ iv, ∂
∂τ

= 1
2

(
∂
∂u

+ 1
i
∂
∂v

)
and ∂

∂τ̄
= 1

2

(
∂
∂u
− 1

i
∂
∂v

)
.

Harmonic Maass forms are smooth functions f on H which have transformion

property similar to weight-k modular forms but with an additional condition that

they are also annihilated by the weight-k hyperbolic Laplacian operator. In the

upcoming discussion, we will see that weight-k weakly holomorphic modular forms

are trivial examples of harmonic Maass forms. Thus, this theory can be considered

as a natural generalization of the classical theory of modular forms.

We now state the precise definition following[2].

Definition 4.1. Let k ∈ 1
2
Z. A smooth function (in real sense) f : H → C is

called a weight-k harmonic Maass form on Γ0(N) (4|N if k ∈ 1
2
Z \ Z) if
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(i) For all

(
a b

c d

)
∈ Γ0(N) and τ ∈ H, we have

f

(
az + b

cz + d

)
=

(cz + d)kf(τ) if k ∈ Z

( c
d
)ε2k
d (cz + d)kf(τ) if k ∈ 1

2
+ Z.

(ii) ∆k(f) = 0.

(iii) There exists a polynomial Pf (τ) ∈ C[q−1] such that f(τ)− Pf (τ) = O(e−εv)

as v →∞ for some ε > 0. Similar conditions hold at other cusps.

If the third condition in the above definition is replaced by f(τ) = O(eεv), then

f is said to be a harmonic Maass form of manageable growth. Space of harmonic

Maass forms of weight k is denoted by Hk(Γ) and that of harmonic Maass forms

of manageable growth is denoted by H !
k(Γ).

We make the following remarks.

Remark 4.2. (i) Let s be a cusp Γ0(N)−inequivalent to i∞ and let γ ∈ SL2(Z)

be such that γ(i∞) = s. Then the cusp condition for f at s is given by the

requirement that f |kγ rather than f satisfy Definition 4.1(iii).

(ii) For k = 0, weight-k harmonic Maass forms are called harmonic Maass func-

tions.

(iii) The eigenfunctions of ∆k which satisfy the modularity (Definition (4.1)(i))

and cusp condition (Definition (4.1)(ii)) in above Definition (4.1) are called

weak Maass forms.

(iv) The polynomial Pf (τ) ∈ C[q−1] in Definition (4.1) (iii) is called the principal

part of f at i∞. Similar principal parts exist at all of the cusps.

(v) Since Pf (τ) = O(eεv) for some ε > 0 as v →∞ for any Pf (τ) ∈ C[q−1]. Thus

if if f ∈ Hk(Γ), then f ∈ H !
k(Γ). Thus Hk(Γ) ⊂ H !

k(Γ).

(vi) Harmonic Maass forms on Γ0(N) with Nebentypus χ, where χ is a Drichlet

character modulo n, can also be defined in a similar way. The modularity
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condition in Definition (4.1) is modified as follows:

For all

(
a b

c d

)
∈ Γ0(N) and τ ∈ H,

f

(
az + b

cz + d

)
=

χ(d)(cz + d)kf(τ) if k ∈ Z

χ(d)( c
d
)ε2k
d (cz + d)kf(τ) if k ∈ 1

2
+ Z.

We let Hk(Γ0(N), χ) (respectively H !
k(Γ0(N), χ)) denote the space of weight-

k harmonic Maass forms (respectively with manageable growth) with Neben-

typus χ.

(vii) The transformation laws in the definition can be framed conveniently in

terms of the stroke operator. We define the weight-k stroke operator as

follows:

For γ =

(
a b

c d

)
∈ Γ0(N) and τ ∈ H,

f |kγ(τ) =

(cz + d)−kf(γ(τ)) if k ∈ Z

( c
d
)ε2k
d (cz + d)−kf(γ(τ)) if k ∈ 1

2
+ Z.

Then the modularity condition can be succinctly written as

f |kγ = f.

for all γ ∈ Γ0(N).

Let f be a weakly holomorphic weight-k modular form. Then it is holomorphic

on H and may have poles at the cusps. Thus f is annihilated by the anti

holomorphic derivative ∂
∂τ̄

. Thus ∆k(f) = 0. Moreover f satisfies modularity

condition as required in Definition (4.1). To check the cusp condition, observe

that f has a Fourier expansion of the form

f(z) =
∞∑

n=n0

a(n)qnh
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at i∞ where n0 is some negative integer. The principal part Pf (τ) of f at

i∞ can simply be taken to be f(z) =
0∑

n=n0

a(n)qnh . Thus we see that weakly

homomorphic weight-k modular forms are trivial examples of harmonic Maass

forms. Thus we have the following containments

M !
k(Γ) ⊂ Hk(Γ) ⊂ H !

k(Γ). (4.1)

4.2 Fourier Expansion

The Fourier expansion of harmonic Maass forms involves the incomplete gamma

function. The incomplete gamma function is defined as

Γ(s, z) :=

∞∫
z

e−tts
dt

t
.

This integral converges absolutely for Re(s) > 0 and z ∈ C (or any s ∈ C and

z ∈ H). It can be analytically continued in s using the functional equation in next

Lemma.

Lemma 4.3. For z ∈ C and Re(s) > 0 we have,

Γ(s+ 1, z) = sΓ(s, z) + zse−z.

Note that the functional equation gives analytic continuation of the incomplete

gamma function in s to all of C except at the negative reals since Γ(s, z) is not

initially defined at s = 0. The next result resolves this issue by defining the

incomplete gamma function at s = 0.

Lemma 4.4.

Γ(0, z) = Ein(z)− Log(z)− γ
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where the entire function Ein, the complementary error integral is given by

Ein(z) :=

∫ z

0

(1− e−t)dt
t

and γ is the Euler-Mascheroni constant.

We also need the asymptotic behaviour of the incomplete gamma function.

Lemma 4.5. For x ∈ R, we have that

Γ(s, x) ∼ xs−1e−x as |x| → ∞.

We now establish the Fourier expansion for harmonic Maass forms[2].

Theorem 4.6. Let k ∈ 1
2
Z \ {1} and Γ ∈ {Γ0(N),Γ1(N)}. If f ∈ H !

k(Γ) then

f(τ) = f(u+ iv) =
∑

n>>−∞

c+
f (n)qn + c−f (0)v1−k +

∑
n<<∞
n6=0

c−f (n)Γ(1− k,−4πnv)qn.

If f ∈ Hk(Γ) then

f(τ) = f(u+ iv) =
∑

n>>−∞

c+
f (n)qn +

∑
n<0

c−f (n)Γ(1− k,−4πnv)qn

at i∞. Similar expressions hold at other cusps. The notation
∑

n>>−∞
means

∞∑
n=αf

for some αf ∈ Z.
∑

n<<∞
is defined similarly.

Proof. From Definition (4.1)(i), for

(
1 1

0 1

)
, we get f(u + iv + 1) = f(u + iv).

Thus if we consider f as a function of u only for a fixed v, then f has Fourier

expansion (at i∞) in the real sense, of the form

f(τ) =
∑
n∈Z

af (n, v)e2πinu.
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Now since ∆k(f) = 0, we get

∆k

a(v) +
∑
n∈Z
n 6=0

a(n, v)e2πinu

 = 0

=⇒ ∆k(a(v)) + ∆k

∑
n∈Z
n 6=0

a(n, v)e2πinu

 = 0

=⇒ ∆k(a(v)) +
∑
n∈Z
n 6=0

∆k

(
a(n, v)e2πinu

)
= 0.

where a(0, v) = a(v) and we have interchanged the summation and Laplacian in

view of the absolute and uniform convergence of the Fourier series. Comparing

the coefficients of e2πinu in above equation, we get ∆k(a(v)) = 0. This gives

−v2

(
d2a(v)

dv2

)
+ ikv

(
i
da(v)

dv

)
= 0

=⇒ v2a′′(v) + kva′(v) = 0

where ′ is derivative with respect to v. This is Euler’s second order homogeneous

ordinary differential equation. To solve this, put a(v) = vr, then the ODE trans-

forms to

v2r(r − 1)vr−2 + kvrvr−1 = 0

=⇒ (r(r − 1) + kr)vr = 0

=⇒ r2 − r + kr = 0

which gives r = 0, 1− k. Thus

a(v) = c+
f (0) + c−f (0)v1−k (4.2)

for arbitrary complex numbers c+
f (0) and +c−f (0). Now we solve∑

n∈Z
n6=0

∆k

(
a(n, v)e2πinu

)
= 0.
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For n 6= 0, Put a(n, v) = C(ω) where ω = 2πnv. Then by chain rule,

∂C(ω)

∂v
=
∂C(ω)

∂ω

∂ω

∂v
= 2πn

∂C(ω)

∂ω
∂2C(ω)

∂v2
= (2πn)2∂

2C(ω)

∂ω2
.

We now have∑
n∈Z
n6=0

∆k

(
a(n, v)e2πinu

)
= 0

=⇒
∑
n∈Z
n6=0

∆k(a(n, v))e2πinu + a(n, v)∆k

(
e2πinu

)
= 0

=⇒ −v2

∑
n∈Z
n6=0

C(ω)
∂2e2πinu

∂u2
+
∑
n∈Z
n6=0

∂2C(ω)

∂v2
e2πinu

+

ikv

∑
n∈Z
n6=0

C(ω)
∂e2πinu

∂u
+ i
∑
n∈Z
n 6=0

∂C(ω)

∂v
e2πinu

 = 0

=⇒ −
( ω

2πn

)2

∑
n∈Z
n6=0

C(ω)
∂2e2πinu

∂u2
+
∑
n∈Z
n6=0

(2πn)2∂
2C(ω)

∂ω2
e2πinu

+

ik
ω

2πn

∑
n∈Z
n6=0

C(ω)(2πin)e2πinu + i
∑
n∈Z
n6=0

∂C(ω)

∂ω
(2πn)e2πinu

 = 0

=⇒ −ω2
∑
n∈Z
n6=0

(
−C(ω)− e2πinu +

∂2C(ω)

∂ω2
e2πinu

)
−

kω
∑
n∈Z
n6=0

(
C(ω)e2πinu +

∂C(ω)

∂ω
e2πinu

)
= 0

=⇒ −ω2
∑
n∈Z
n6=0

[
∂2C(ω)

∂ω2
− C(ω) +

k

ω

(
C(ω) +

∂C(ω)

∂ω

)]
e2πinu = 0
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which finally gives

∂2C(ω)

∂ω2
− C(ω) +

k

ω

(
C(ω) +

∂C(ω)

∂ω

)
= 0. (4.3)

It is easily checked that e−ω is a solution of (4.3). Another linearly independent

solution to (4.3) is given by by Γ(1− k,−2ω)e−ω for ω 6= 0 (we had n 6= 0, τ ∈ H
so v 6= 0.) where

Γ(1− k,−2ω) =

∞∫
−2ω

e−tt−kdt (analytically continued)

So, using (4.2) and the solutions to (4.3) we have the following series expansion

for f(τ)

f(τ) =
∑
n∈Z
n6=0

[
c+
f (n)e−ωe2πinu + c−f (n)e−ωΓ(1− k,−2ω)e2πinu

]
+ c+

f (0) + c−f (0)v1−k

which after putting the value of ω gives

f(τ) =
∑
n∈Z

c+
f (n)qn + c−f (0)v1−k +

∑
n∈Z
n6=0

c−f (n)Γ(1− k,−4πnv)qn. (4.4)

Now we use Lemma (4.5) to obtain the restrictions on the sum. For large n,

Γ(1 − k,−4πnv) ∼ (−4πnv)−ke4πnv. Thus the term of the second sum ar of the

form c−f (n)(−4πnv)−ke2πnve2πinu 6= O(eεv) for any ε > 0 as n is unbounded. So

the second sum must be bounded from above. Similarly, in the first sum, we have

c+
f (n)qn = c+

f (n)e−2πnve2πinu 6= O(eεv) for any ε > 0 if n goes all the way to −∞.

Thus the first sum must be bounded from below. So we finally obtain

f(τ) =
∑

n>>−∞

c+
f (n)qn + c−f (0)v1−k +

∑
n<<∞
n6=0

c−f (n)Γ(1− k,−4πnv)qn.

In particular, if f ∈ Hk(Γ), then ∃Pf (τ) ∈ C[q−1] such that f(τ)−Pf (τ) = O(e−εv)

for some ε > 0 as v →∞. If in the second sum n > 0, then −πnv < 0 and as v →
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∞, |−4πnv| → ∞ and hence c−f (n)Γ(1−k,−4πnv)qn ∼ c−f (n)(−4πnv)−ke2πnve2πinu 6=
O(e−εv) for any ε > 0. Thus we must have n < 0 in second sum. Finally c−f (0) = 0

since v1−k −→∞ as v −→∞. Thus we get for f ∈ Hk(Γ)

f(τ) =
∑

n>>−∞

c+
f (n)qn +

∑
n<0

c−f (n)Γ(1− k,−4πnv)qn.

Remark 4.7. If k = 1, then v1−k in the Fourier expansion is replaced by log v.

Definition 4.8. We call

f+(τ) =
∑

n>>−∞

c+
f (n)qn

the holomorphic part of f and

f−(τ) = c−f (0)v1−k +
∑
n<<∞
n6=0

c−f (n)Γ(1− k,−4πnv)qn

the nonholomorphic part of f .

Remark 4.9. (i) If f ∈ H !
k(Γ) with f−(τ) = 0 then f ∈M !

k(Γ).

(ii) Consider f ∈ Hk(Γ) such that the Fourier expansion at the cusp i∞ has the

form

f(τ) =
∞∑
n=0

c+
f (n)qn +

∑
n<<∞
n 6=0

c−f (n)Γ(1− k,−4πnv)qn.

Thus the holomorphic part is bounded near cusps and so the exponential

growth at the cusps arises from the non holomorphic part. We denote by

H#
k (Γ), the space of f ∈ H !

k(Γ) with Fourier expansion as above.

4.3 Differential operators

In this section, we assume k ∈ 1
2
Z. In particular if k ∈ Z then χ = 1 and k ∈ 2Z

since there are no odd integral weight modular forms. We also restrict to the group
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Γ0(N). We would like to have maps between different spaces of harmonic Maass

forms.

4.3.1 Maass operators and harmonic Maass forms

Define the following differential operator,

D = Dτ =
1

2πi

∂

∂τ
(4.5)

Lemma 4.10. Let f : H→ C transform as

f(γτ) = (cτ + d)kf(τ); γ =

(
a b

c d

)
∈ SL2(Z). (4.6)

Then

D(f)(γτ) = (cτ + d)k+2D(f)(τ) +
k

2πi
c(cτ + d)k+1f(τ). (4.7)

Proof. Differentiating Eq. (4.6) with respect to τ both sides we get

f ′(γτ)
d

dτ

(
aτ + b

cτ + d

)
= (cτ + d)kf ′(τ) + k(cτ + d)k−1cf(τ). (4.8)

Now

d

dτ

(
aτ + b

cτ + d

)
=

a

cτ + d
− c aτ + b

(cτ + d)2
=
a(cτ + d)− c(aτ + b)

(cτ + d)2

=
ad− bc

(cτ + d)2
= (cτ + d)−2.

Thus plugging this in to (4.8), we get

f ′(γτ) = (cτ + d)k+2f ′(τ) +
k

2πi
c(cτ + d)k+1f(τ).

Dividing by 2πi now gives the desired relation.

Lemma (4.10) shows that for k 6= 0, the operator D does not preserve modularity.
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But this can be rectified in a certain way. To this end, we define the Maass Raising

and Lowering operator.

Definition 4.11. Put τ = u+ iv ∈ H. Define the Maass raising operator Rk and

Maass lowering operator Lk by

Rk := 2i
∂

∂τ
+
k

v
= i

(
∂

∂u
− i ∂

∂v

)
+
k

v

Lk := −2iv2 ∂

∂τ
= −iv2

(
∂

∂u
+ i

∂

∂v

)
.

(4.9)

Observe that Rk = −4πD+ k
v
. The reason for the names “raising” and “lowering”

will become apparent in next Lemma.

Theorem 4.12. Let f be a smooth function on H, let k ∈ 1
2
Z, and let γ ∈ SL2(Z)

with γ ∈ Γ0(4) if k ∈ 1
2
Z \ Z. Then we have,

(i) With respect to the slash operator, we have that

Rk(f |kγ) = Rk(f)|k+2γ

Lk(f |kγ) = Lk(f)|k−2γ.

In particular, if f transforms as in Eq. (4.2) then we have,

Rk(f)|k+2γ = Rk(f) and Lk(f)|k−2γ = Lk(f).

(ii) The weight-k hyperbolic Laplacian may be expressed as

−∆k = Lk+2 ◦Rk + k = Rk−2 ◦ Lk. (4.10)

(iii) If f is an eigenfunction of ∆k with eigenvalue λ, then

∆k+2(Rk(f)) = (λ+ k)Rk(f)

∆k−2(Lk(f)) = (λ− k + 2)Lk(f).
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Proof. Let γ =

(
a b

c d

)
∈ SL2(Z) and for simplicity define

ρk(c, d) = ρk(γ) :=

1 if k ∈ Z

( c
d
)ε2k
d if k ∈ 1

2
+ Z.

(i) Rk(f) = 2if ′ + k
v
f . Thus

(Rk(f)|k+2γ) (τ) = 2i(f ′|k+2γ)(τ) +

((
k

Im(τ)
f

) ∣∣∣∣
k+2

γ

)
(τ).

But ((
k

Im(τ)
f

) ∣∣∣∣
k+2

γ

)
(τ) =

k

Im(γτ)
f(γτ)ρk+2(γ)(cτ + d)−(k+2)

=
k

v
|cτ + d|2f(γτ)ρk+2(γ)(cτ + d)−(k+2)

and

(f ′|k+2γ)(τ) = (cτ + d)−kρk(γ)f ′(γτ)

by definition of the slash operator. Plugging these, we get

(Rk(f)|k+2γ) (τ) = ρk+2(γ)(cτ + d)−(k+2)

(
2if ′(γτ) +

k

v
|cτ + d|2f(γτ)

)
.

On the other hand

Rk(f |kγ)(τ) = Rk((cτ + d)−kρk(γ)f(γτ))

= 2i
∂

∂τ
((cτ + d)−kρk(γ)f(γτ)) +

k

v
((cτ + d)−kρk(γ)f(γτ))

= ρk(γ)

[
2if ′(γτ)

∂

∂τ

(
aτ + b

cτ + d

)
(cτ + d)−k + 2if(γτ)

∂

∂τ
(cτ + d)−k

+
k

v
((cτ + d)−k(γ)f(γτ)

]
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where we used the chain rule. Now using ∂
∂τ

(
aτ+b
cτ+d

)
= (cτ + d)−2, we get

Rk(f |kγ)(τ) = ρk(γ)

[
2if ′(γτ)(cτ + d)−k−2 + 2ikcf(γτ)(cτ + d)−k−1

+
k

v
((cτ + d)−kf(γτ)

]
= ρk(γ)(cτ + d)−(k+2)

[
2if ′(γτ)− 2ikc(cτ + d)f(γτ) +

k

v
(cτ + d)2f(γτ)

]
= ρk(γ)(cτ + d)−(k+2)

[
2if ′(γτ) + k(cτ + d)f(γτ)

(
cτ + d

v
− 2ic

)]
= ρk(γ)(cτ + d)−(k+2)

[
2if ′(γτ) +

k

v
(cτ + d)f(γτ) (cu+ civ + d− 2icv)

]
= ρk(γ)(cτ + d)−(k+2)

[
2if ′(γτ) +

k

v
(cτ + d)f(γτ)(cτ + d)

]
= ρk(γ)(cτ + d)−(k+2)

[
2if ′(γτ) +

k

v
|cτ + d|2f(γτ)

]
.

Now observe that

ρk+2(γ) :=

1 if k ∈ Z

( c
d
)ε

2(k+2)
d if k ∈ 1

2
+ Z.

=

1 if k ∈ Z

( c
d
)ε2k
d if k ∈ 1

2
+ Z.

= ρk(γ).

Thus we see that Rk(f |kγ) = Rk(f)|k+2γ. For the lowering operator we need

to extra care as f is also dependent on τ and under slash operator, τ 7→ γτ .

So with these points in mind, observe that

Lk(f |kγ)(τ) = −2iv2ρk(γ)
∂

∂τ
(f(γτ, γτ))(cτ + d)−k

= −2iv2ρk(γ)

(
∂f

∂τ

)
(γτ)(cτ + d)−k(cτ + d)−2.
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On the other hand,

(Lk(f)|k+2γ) (τ) = ρk−2(γ)(cτ + d)−(k−2)

(
− 2iv2

|cτ + d|4

)(
∂f

∂τ

)
(γτ)

= ρk−2(γ)(cτ + d)−k
(
− 2iv2

(cτ + d)2

)(
∂f

∂τ

)
(γτ).

Thus we have Lk(f |kγ) = Lk(f)|k−2γ since ρk−2(γ) = ρk(γ).

(ii) By definition, we have,

Rk−2 ◦ Lk =

(
2i
∂

∂τ
+
k − 2

v

)(
−2iv2 ∂

∂τ

)
= 4

∂

∂τ

(
v2 ∂

∂τ

)
− 2iv(k − 2)

∂

∂τ

= 4v2 ∂

∂τ

∂

∂τ
− 4iv

∂

∂τ
− 2iv(k − 2)

∂

∂τ

= 4v2 ∂

∂τ

∂

∂τ
− 2ivk

∂

∂τ

= −∆k

where we used the fact that

∂

∂τ
v2 =

1

2

(
∂

∂u
− i ∂

∂v

)
(v2) = −iv

For the second equality, we will act it on a test function f ,

(Lk+2 ◦Rk + k)f =

[(
−2iv2 ∂

∂τ

)(
2i
∂

∂τ
+
k

v

)
+ k

]
f

= 4v2

(
∂

∂τ

∂

∂τ
f

)
− 2iv2 1

2

(
∂

∂u
+ i

∂

∂v

)(
k

v
f

)
+ kf

= 4v2

(
∂

∂τ

∂

∂τ
f

)
− kf + kf − 2ikv

∂

∂τ

= −∆kf.

Thus, we get Lk+2 ◦Rk + k = −∆k.
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(iii) We have ∆k(f) = λf . Then by (ii),

−(Lk ◦Rk−2 ◦ Lk)f = −Lk ◦ ((Rk−2 ◦ Lk))f) = −Lk(−λf) = λLkf

Thus −(Lk ◦ Rk−2 ◦ Lk)f − (k − 2)Lkf = λLkf − (k − 2)Lkf . This gives

−(Lk ◦Rk−2 − (k − 2))Lkf = (λ− k + 2)Lkf . Again by (ii), L.H.S of above

equality is ∆k−2Lkf . Thus we finally get ∆k−2Lkf = (λ − k + 2)Lkf . To

prove the other relation, we will use ∆k = −(Lk+2 ◦Rk + k). This gives

− (Lk+2 ◦Rk + k)f = λf

⇒ −(Rk ◦ Lk+2 ◦Rk + kRk)f = λRkf

⇒ −(Rk ◦ Lk+2)(Rkf)− kRkf = λRkf

⇒ ∆k+2(Rkf) = (λ+ k)Rkf.

Remark 4.13. (i) Raising and lowering operators preserve modularity up to

a change in weight and preserve eigenfunctions of ∆k up to a change in

eigenvalue. Hence, these operators map weak Maass forms to weak Maass

forms, up to a change in weight and eigenvalue.

(ii) Rk does not preserve meromorphicity. But for k = 0, we have R0 = −4πD.

Thus, in this case the raising operator preserves modularity as well as meo-

morphicity. For general integer k, it is possible to “compose” Rk with itself a

special number of times to define maps between weakly holomorphic modular

forms. We take up this issue in the next section.

4.3.2 Maps between spaces of weakly holomorphic

modular forms

We first define the composition of raising operator as discussed in Remark 4.13.

For n ∈ N and k ∈ Z, define

Rn
k := Rk+2(n−1) ◦ · · · ◦Rk+2 ◦Rk and R0

k := 1 (4.11)
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This composition keeps track of the “correct” weights at each step. With this

definition we have the following Theorem due to Zagier.

Theorem 4.14. For all k ∈ Z and n ∈ N ∪ {0}, we have

Rn
k =

n∑
r=0

(−1)r

(
n

r

)
(k + r)n−rv

r−n(4πD)r

where (a)n = a(a+ 1) . . . (a+n− 1) is the rising factorial. We use the convention

that

(
n

−1

)
= 0.

Proof. We use induction to prove the claim. For n = 0, the statement is trivial as

both sides is 1. Suppose now that the identity is true for natural number n. We

will show that the statement is true for n+ 1. First observe that

D(v) =
1

2πi

1

2

(
∂

∂u
− ∂

∂v

)
v = − 1

4π
= −(4π)−1.

Now since

Rn+1
k = Rk+2n ◦Rk+2(n−1) ◦ · · · ◦Rk+2 ◦Rk = Rk+2n ◦Rn

k ,

we have

Rn+1
k = Rk+2n ◦Rn

k = −4πD ◦Rn
k + (k + 2n)v−1Rn

k

= −4π
n∑
r=0

(−1)r

(
n

r

)
(k + r)n−rD

(
vr−n(4πD)r

)
+

n∑
r=0

(−1)r

(
n

r

)
(k + r)n−r(k + 2n)vr−n−1(4πD)r

= −4π
n∑
r=0

(−1)r

(
n

r

)
(k + r)n−rv

r−n−1(−(4π)−1)(4πD)r+

n∑
r=0

(−1)r+1

(
n

r

)
(k + r)n−rv

r−n(4πD)r+1+

n∑
r=0

(−1)r

(
n

r

)
(k + r)n−r(k + 2n)vr−n−1(4πD)r
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=
n∑
r=0

(−1)r

(
n

r

)
(k + r)n−rv

r−n−1(4πD)r+

n+1∑
r=0

(−1)r

(
n

r − 1

)
(k + r − 1)n−r+1v

r−n−1(4πD)r+

n∑
r=0

(−1)r

(
n

r

)
(k + r)n−r(k + 2n)vr−n−1(4πD)r

= (−1)n+1

(
n

n

)
(k + n)0v

0(4πD)n+1+

n∑
r=0

(−1)r

[(
n

r

)
(k + r)n−r(r + k + n) +

(
n

r − 1

)
(k + r − 1)n−r+1

]
vr−n−1(4πD)r

= (−1)n+1(4πD)n+1+

n∑
r=0

(−1)r

[(
n

r

)
(k + r)n−r(r + k + n) +

(
n

r − 1

)
(k + r − 1)n−r+1

]
vr−n−1(4πD)r.

But since (k + r)n−r = (k + r)(k + r + 1) . . . (k + r + n− r − 1) = (k + r)(k + r +

1) . . . (k+n− 1) and (k+ r− 1)n−r+1 = (k+ r− 1)(k+ r) . . . (k+ r− 1 +n− r) =

(k + r − 1)(k + r) . . . (k + n− 1), thus we get

Rn+1
k = (−1)n+1(4πD)n+1+

n∑
r=0

(−1)r(k + r) . . . (k + n− 1)

[
(r + k + n)

(
n

r

)
+ (k + r − 1)

(
n

r − 1

)]
vr−n−1(4πD)r.

Now, note that[
(r + k + n)

(
n

r

)
+ (k + r − 1)

(
n

r − 1

)]

=

[
(r + k + n)

(
n

r

)
+ (k + r − 1 + n− n)

(
n

r − 1

)]

=

[
(k + n)

((
n

r

)
+

(
n

r − 1

))
+ r

((
n

r

)
+

(
n

r − 1

))
− (n+ 1)

(
n

r − 1

)]

=

[
(k + n)

(
n+ 1

r

)
+ r

(
n+ 1

r

)
− (n+ 1)

(
n

r − 1

)]
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It can easily be checked that r

(
n+ 1

r

)
= (n+ 1)

(
n

r − 1

)
. Thus we have,

Rn+1
k = (−1)n+1(4πD)n+1+

n∑
r=0

(−1)r(k + r) . . . (k + n− 1)(k + n)

(
n+ 1

r

)
vr−n−1(4πD)r

= (−1)n+1(4πD)n+1 +
n∑
r=0

(−1)r

(
n+ 1

r

)
(k + r)n+1−rv

r−n−1(4πD)r

=
n+1∑
r=0

(−1)r

(
n+ 1

r

)
(k + r)n+1−rv

r−n−1(4πD)r

as claimed.

As discussed in previous section, we want to define map between spaces of weakly

holomorphic modular forms. We will do this by relating the raising operator which

preserves modularity and the differential operatorD which preserves meromorphic-

ity. This relation is called Bol’s identity.

Theorem 4.15. (Bol’s identity) For k ∈ N, we have

Dk−1 =
1

(−4π)k−1
Rk−1

2−k.

In particular, we have that

Dk−1 : M !
2−k(Γ0(N)) −→M !

k(Γ0(N)).

Proof. We use Theorem 4.14 with n replaced by k − 1 and k replaced by 2 − k.

We get

Rk−1
2−k =

k−1∑
r=0

(−1)r

(
k − 1

r

)
(2− k + r)k+1−rv

r−k+1(4πD)r

= (−1)k−1v0(4πD)k−1 +
k−2∑
r=0

(−1)r

(
k − 1

r

)
(2− k + r)k+1−rv

r−k+1(4πD)r.

But (2−k+r)k+1−r = 0 for all 0 ≤ r ≤ k−2 as 2−k+r ≤ 0 ≤ 2 = 2−k+r+k−r
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for all 0 ≤ r ≤ k − 2. Thus we get,

Rk−1
2−k = (−1)k−1(4πD)k−1

=⇒ Dk−1 =
1

(−4π)k−1
Rk−1

2−k.

Now, using Theorem 4.12 (i), we see that if f satisfies modularity of weight 2− k
then Rk−1

2−k satisfies modularity of weight 2− k + 2(k − 1) = k. Meromorphicity at

the cusps follows from the fact that Dk−1 preserves meromorphicity.

Theorem 4.15 shows that the Bol operator Dk−1 maps weakly holomorphic modular

forms of weight 2 − k to weakly holomorphic modular forms of weight k. Infact,

we have a much more general result concerning the Bol operator.

Theorem 4.16. For k ≥ 2 an integer, the following are true:

(i) We have that

Dk−1 : H2−k(Γ0(N)) −→M !
k(Γ0(N)).

(ii) With the notations of Theorem 4.6, for f ∈ H2−k(Γ0(N)), we have

Dk−1(f(τ)) = Dk−1(f+(τ)) =
∑

n>>−∞

c+
f (n)nk−1qn.

(iii) We also have

Dk−1 : H !
2−k(Γ0(N))�M !

k(Γ0(N)).

where the two headed arrow means the map is surjective.

(iv) With the notations of Theorem 4.6, for f ∈ H !
2−k(Γ0(N)), we have

Dk−1(f(τ)) = Dk−1(f(τ)) = (−4π)1−k(k − 1)!c−f (0) +
∑

n>>−∞

c+
f (n)nk−1qn.

Proof. To prove (i), we claim that for n ∈ N

Dk−1
(
Γ(k − 1, 4πnv)q−n

)
= 0.
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To see this, first observe that

Γ(α, ω)eω =

∞∫
0

(ω + t)α−1e−tdt.

For α = k − 1, ω = 4πnv, we get

Γ(k − 1, 4πnv)e4πnv =

∞∫
0

(4πnv + t)k−2e−tdt

which gives

Dk−1
(
Γ(k − 1, 4πnv)e4πnv

)
=

(
1

2πi

)k−1
∞∫

0

∂k−1

∂τ k−1
(4πnv + t)k−2e−tdt = 0

because, (4πnv + t)k−2 when differentiated k − 1 times gives zero. Now

Γ(k−1, 4πnv)q−n = Γ(k−1, 4πnv)e4πnve−2πnve−2πinu = Γ(k−1, 4πnv)e4πnve−2πinτ .

Thus

Dk−1
(
Γ(k − 1, 4πnv)q−n

)
= Dk−1

(
Γ(k − 1, 4πnv)e4πnv

)
e−2πinτ = 0.

Now suppose f ∈ H2−k(Γ0(N)), then the non-holomorphic part is

f−(τ) =
∑
n<0

c−f (n)Γ(k − 1,−4πnv)qn.

Thus by the calculation above, we see that Dk−1(f−(τ)) = 0. Thus Dk−1(f(τ)) =

Dk−1(f+(τ)) is holomorphic on H. To prove that Dk−1(f(τ)) ∈ M !
k(Γ0(N)), we

must prove that it is meromorphic at the cusps of Γ0(N). It suffices to prove

the Fourier expansion of Dk−1(f(τ)) as in (ii) which will prove that Dk−1(f(τ))

is meromorphic at i∞. At other cusps, similar Fourier expansion for f exists.

Thus meromorphicity at other cusps follows doing a similar calculation with the
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corresponding Fourier expansion of f . We now prove (ii). Observe that

Dk−1(qn) =

(
1

2πi

)k−1
∂k−1

∂τ k−1
e2πinτ = nk−1qn.

Thus we get

Dk−1(f(τ)) = Dk−1(f+(τ)) =
∑

n>>−∞

c+
f (n)nk−1qn.

To prove (iii), observe that if f ∈ H !
2−k(Γ0(N)), then the non-holomorphic part is

f−(τ) = c−f (0)vk−1 +
∑
n<<∞

c−f (n)Γ(k − 1,−4πnv)qn.

Again Dk−1(f(τ)) = Dk−1(c−f (0)vk−1) +Dk−1(f+(τ)). But

Dk−1(c−f (0)vk−1) = c−f (0)

(
1

2πi

)k−1
∂k−1

∂τ k−1
vk−1

= c−f (0)

(
1

2πi

)k−1
1

2k−1

(
(−i)k−1 ∂

k−1

∂τ k−1
vk−1

)
= c−f (0)(−4π)1−k(k − 1)!

Thus we get the desired Fourier expansion of (iv). To prove the surjectivity of

(iii), we will first need to define ξ operator and the flipping operator.

Remark 4.17. (i) The image of f under the Bol operator is called the Ghost

of f .

(ii) The map in Theorem 4.16 (i) is not surjective. Thus we can talk about

the image of H2−k(Γ0(N)) under the Bol operator. The image can be char-

acterised using the regularised inner product defined in terms of the usual

Petterson inner product.

We constructed a map between space of harmonic Maass forms and space of weakly

holomorphic modular forms using the Maass raising operator. A similar map can

be defined using the Maass lowering operator.
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Definition 4.18. For k ∈ Z, define the ξ-operator as

ξk := 2ivk
∂

∂τ̄
= vk−2Lk.

We have the following Theorem.

Theorem 4.19. Let k ∈ 1
2
Z and N ∈ N. We have

(i) ξ2−k : H2−k(Γ0(N))� Sk(Γ0(N)).

(ii) For f ∈ H2−k(Γ0(N)), we have that

ξ2−k(f(τ)) = ξ2−k(f
−(τ)) = −(4π)k−1

∞∑
n=1

c−f (−n)nk−1qn.

(iii) ξ2−k : H !
2−k(Γ0(N))�M !

k(Γ0(N)).

(iv) For f ∈ H !
2−k(Γ0(N)), we have that

ξ2−k(f(τ)) = ξ2−k(f
−(τ)) = (k − 1)c−f (0)− (4π)k−1

∑
n>>−∞

c−f (−n)nk−1qn.

Proof. To prove (i), we first prove that ξ2−k(f(τ)) satisfies modularity of weight

k. Since f ∈ H2−k(Γ0(N)), thus

f |2−kγ = f ∀γ ∈ Γ0(N)

Thus, by Theorem 4.12 (i), we have

L2−k(f)|−kγ = L2−k(f) ∀ γ ∈ Γ0(N). (4.12)

Now for γ =

(
a b

c d

)
∈ Γ0(N), we have

(ξ2−k(f)|kγ) (τ) =
(

[v−kL2−k(f)]|kγ
)

(τ) =
v−k

|cτ + d|−2k
L2−k(f)(γτ)ρk(γ)(cτ+d)−k.
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By taking complex conjugation on both sides of Eq. (4.12), we get

L2−k(f)(γτ) =
(L2−k(f)) (τ)(cτ + d)k

ρ−k(γ)
.

Thus we get

(ξ2−k(f)|kγ) (τ) =
v−k

(cτ + d)−k(cτ + d)
−k

(L2−k(f)) (τ)(cτ + d)k

ρ−k(γ)
ρk(γ)(cτ + d)−k

= v−k (L2−k(f)) (τ)

= (ξ2−k(f)) (τ)

where the second last equality follows by noting that ρ−k(γ) = ρk(γ). Next, observe

that since f+(τ) is holomorphic, thus ∂f+(τ)
∂τ

= 0. Hence ξ2−k(f
+) = 0. We will

now separately compute ξ2−k(f
−). We have

∂

∂τ
Γ(k − 1,−4πnv) =

1

2

(
∂

∂u
+ i

∂

∂v

)
Γ(k − 1,−4πnv) =

i

2

∂

∂v
Γ(k − 1,−4πnv)

=
i

2

∂

∂(−4πnv)
Γ(k − 1,−4πnv)

d(−4πnv)

dv

=
−4πinv

2

∂

∂(−4πnv)

∞∫
−4πnv

e−ttk−2dt

=
−4πinv

2

∂

∂(−4πnv)

 ∞∫
0

−
−4πnv∫

0

e−ttk−2dt


=

4πinv

2
(−4πnv)k−2e4πnv

= −(4πn)k−1ivk−2 (−1)k−1

2
e4πnv.
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where we used fundamental Theorem of calculus. Now,

ξ2−k(f
−(τ)) = 2iv2−k

∑
n<0

c−f (n)
∂

∂τ
Γ(k − 1,−4πnv)qn

= −2iv2−k
∑
n<0

c−f (n)(4πn)k−1ivk−2
(−1)k−1

2
e4πnvqn

= −(4π)k−1
∑
n<0

c−f (n)nk−1(−1)k−1e4πnv−2πinτ

= −(4π)k−1
∑
n<0

c−f (n)(−n)k−1e−2πinτ

= −(4π)k−1

∞∑
n=1

c−f (−n)nk−1e2πinτ

= −(4π)k−1

∞∑
n=1

c−f (−n)nk−1qn.

Since at every other cusp, f has similar Fourier expansion, thus repeating above

calculation at other cusps shows that ξ2−k(f) is indeed a cusp form. Above

calculation gives (ii) as well. (iii) follows if we prove (iv). Now note that if

f ∈ H !
2−k(Γ0(N)), then f− has one more term namely c−f (0)vk−1. Thus we just

need to calculate ξ2−k(c
−
f (0)vk−1). We have

ξ2−k(c
−
f (0)vk−1) = 2iv2−k ∂

∂τ
c−f (0)vk−1

= 2iv2−kc−f (0)
i

2

∂

∂v
vk−1

= (k − 1)v2−kc−f (0)vk−2

= (k − 1)c−f (0).

Thus we get

ξ2−k(f(τ)) = ξ2−k(f
−(τ)) = (k − 1)c−f (0)− (4π)k−1

∑
n>>−∞

c−f (−n)nk−1qn.

Proving surjectivity of these maps requires the theory of Riemann surfaces and

algebraic geometry. Thus we omit this part here.
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Remark 4.20. The image of f under the ξ operator is called the shadow of f .

There is another important operator which “flips” the holomorphic and non-

holomorphic parts. This operator is called the flipping operator.

Definition 4.21. For f ∈ H !
k(Γ0(N)) with k ∈ −2N0

1, define the flip of f by

Fk(f) := − v−k

(−k)!
R−kk (f).

With this definition, we have the following Theorem

Theorem 4.22. Suppose that f ∈ H !
k(Γ0(N)) with k ∈ −2N0. Then the following

are true:

(i) The image Fk(f) lies in H !
k(Γ0(N)).

(ii) The flipping operator is an involution, that is

Fk(Fk(f)).

(iii) The shadow of the flip of f is given by

ξk(Fk(f)) =
(4π)1−k

(−k)!
D1−k(f).

(iv) The image under the Bol operator of the flip of f is given by

D1−k(Fk(f)) =
(−k)!

(4π)1−k ξk(f).

(v) Assuming the notation of Theorem 4.6 for the Fourier expansion of f , the

Fourier expansion of the flip of f is given by

Fk(f(τ)) = −c−f (0)v1−k − (−k)!
∑

n>>−∞
n6=0

c−f (−n)qn

−c+
f (0)− 1

(−k)!

∑
n<<∞
n6=0

c+
f (−n)Γ(1− k,−4πnv)qn.

1 N0 = N ∪ {0}.
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Proof. To prove (i), we need to show modularity, annihilation by the hyperbolic

Laplacian and appropriate growth condition. Let us first show modularity. Ob-

serve that for γ =

(
a b

c d

)
∈ Γ0(N), we have

Fk(f)(γτ)) = −Im(γτ)−k

(−k)!
R−kk (f)(γτ)

= − v−k

(−k)!|cτ + d|−2k
R−kk (f)(γτ).

But R−kk (f) transforms as a modular form of weight k + 2(−k) = −k. So, using

the slash operator for integer weight, we have

R−kk (f)(γτ) = (cτ + d)−kR−kk (f(τ)).

This gives

Fk(f)(γτ)) = − v−k

(−k)!|cτ + d|−2k
(cτ + d)−kR−kk (f(τ))

= (cτ + d)k
[
− v−k

(−k)!
R−kk (f(τ))

]
= (cτ + d)kFk(f(τ)).

Thus Fk(f) transforms as a modular form of weight k. The growth condition of

Fk(f) is obvious from the growth condition of f since F just contains a positive

power of v and a kth order derivative of f . To complete the proof of (i), we will

assume and prove it next. First observe that for any test function f we have

(ξ2−k ◦ ξ)f = ξ2−k

(
2ivk

∂f

∂τ

)
= 2iv2−k ∂

∂τ

(
2ivk

∂f

∂τ

)
= 2iv2−k2i

ik

2
vk−1∂f

∂τ
− 2iv2−k2ivk

∂

∂τ

∂f

∂τ

= −2ivk
∂f

∂τ
+ 4v2 ∂

∂τ

∂f

∂τ
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= −
[
−4v2 ∂

∂τ

∂

∂τ
+ 2ivk

∂

∂τ

]
f

= −∆k(f)

where we used the fact that

∂vk

∂τ
=
ik

2
vk−1 and

∂g

∂τ
=
∂g

∂τ
.

These two facts follow by simply using the definition of the operators ∂
∂τ

and ∂
∂τ

.

Thus we have ∆k = −ξ2−k ◦ ξk. Now using (iii), we have

∆k(Fk(f)) = −(ξ2−k ◦ ξk)f

= −(4π)1−k

(−k)!
ξ2−k(D

1−k(f)) = 0

since by Theorem 4.16 (iii) D1−k(f) ∈ M !
2−k(Γ0(N)) and by Theorem 4.19 (iv),

ξ2−k(f) = 0 if f is holomorphic. We now prove (iii). First observe that for any

real analytic function g : H→ C, we have

ξk(v
−kg(τ)) = R−k(g(τ)). (4.13)

To see this, observe that

ξk(v
−kg(τ)) = 2ivk

∂

∂τ
v−kg(τ)

= 2ivk
(
−ik

2
v−k−1g(τ)

)
+ 2ivkv−k

∂

∂τ
g(τ)

= −k
v
g(τ) + 2i

∂

∂τ
g(τ)

= R−k(g(τ)).

Now for g = R−kk (f), we get

ξk(v
−kR−kk (f)) = R−k(R

−k
k (f)) = (Rk+2(−k) ◦R−kk )(f) = R1−k

k (f)

= (−4π)1−kD1−k(f)

= −(4π)1−kD1−k(f).
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where we used the Bol’s identity to get the last equality and the fact that k ∈ −2N0.

On dividing both sides by (−k)! in previous equation we get (iii). To prove (ii),

we will first show by induction that for 0 ≤ l ≤ −k

Fk(Fk(f)) =
l!

(−k)!(−k − l)!
v−kR−k−lk+2l

(
v−k−2lR−k−lk (f)

)
. (4.14)

Base case: l = 0

R.H.S. =
1

((−k)!)2
v−kR−kk

(
v−kR−kk (f)

)
=
−v−k

(−k)!
R−kk

(
−v−k
(−k)!

R−kk (f)

)
= Fk(Fk(f)) = L.H.S.

Inductive step: Suppose (4.14) is true for 0 ≤ l ≤ −k − 1, then we prove it for

l + 1. Observe that

Fk(Fk(f)) =
l!

(−k)!(−k − l)!
v−kR−k−lk+2l

(
v−k−2lRk−2(−k−l+1)

(
R−k−l−1
k (f)

))
=

l!

(−k)!(−k − l)!
v−kR−k−lk+2l

(
v−k−2lRk+2(−k−l−1)

(
R−k−l−1
k (f)

))
=

l!

(−k)!(−k − l)!
v−kR−k−l−1

k+2l ◦Rk+2l

(
v−k−2lR−k−2l−2

(
R−k−l−1
k (f)

))
.

We would like to calculate Rk+2l

(
v−k−2lR−k−2l−2

(
R−k−l−1
k (f)

))
. To do this ob-

serve that for any real analytic function g, we have

Rk

(
v−kR−k−2(g(τ))

)
= 2i

∂

∂τ

(
v−kR−k−2(g(τ))

)
+
k

v

(
v−kR−k−2(g(τ))

)
= 2i

(
R−k−2(g(τ))

) ∂v−k
∂τ

+ 2iv−k
∂

∂τ

(
R−k−2(g(τ))

)
+
k

v

(
v−kR−k−2(g(τ))

)
= −kv−k−1

(
R−k−2(g(τ))

)
+ 2iv−k

∂

∂τ

(
R−k−2(g(τ))

)
+
k

v

(
v−kR−k−2(g(τ))

)
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= v−k−22iv2 ∂

∂τ

(
R−k−2(g(τ))

)
= v−k−2

(
−2iv2

∂

∂τ
R−k−2(g(τ))

)
= v−k−2(L−k ◦R−k−2(g(τ)))

= v−k−2(−∆−k−2 + k + 2)g(τ)

where we used Theorem 4.12 (iii) for the last equality. In particular if ∆−k−2g(τ) =

λg(τ), then

Rk

(
v−kR−k−2(g(τ))

)
= v−k−2(−λ+ k + 2)g(τ).

Replacing k by k + 2l and g by R−k−l−1
k (f), we get

Rk+2l

(
v−k−2lR−k−2l−2(R−k−l−1

k (f))
)

= v−k−2l−2(−∆−k−2l−2 + k + 2l + 2)R−k−l−1
k (f).

We now need to calculate ∆−k−2l−2R
−k−l−1
k (f) knowing the fact that ∆kf = 0. To

do this we will again prove a general result concerning eigenvalue of f .

Let ∆kf = λf then for m ∈ N0, we have

∆k+2m(Rm
k (f)) = (λ+m(k +m− 1))Rm

k (f).

Again we will prove this by induction. For m = 0, the relation holds identically.

For m = 1, we have ∆k+2(Rk(f)) = (λ + k)Rk(f) by Theorem 4.12. Suppose the

statement is true for m, then for m+ 1 we get

∆k+2(m+1)(R
m+1
k (f)) = ∆k+2m+2(Rk+2m(Rm

k (f)).

By induction hypothesis ∆k+2m(Rm
k (f)) = (λ + m(k + m − 1))Rm

k (f). Then by

Theorem 4.12 (iii), we have

∆k+2(m+1)(R
m+1
k (f)) = ∆k+2m+2(Rk+2m(Rm

k (f))

= (λ+m(m+ k − 1) + k + 2m)Rm
k (f)

= (λ+mk +m2 −m+ k + 2m)Rm
k (f)

= (λ+ (m+ 1)(k +m))Rm
k (f).
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Using this result for m = −k − l − 1, we have

∆−k−2l−2(R−k−l−1
k (f)) = (−k−l−1)(k−k−l−1−1)Rm

k (f) = (k+l+1)(l+2)Rm
k (f).

Thus we get

Rk+2l

(
v−k−2lR−k−2l−2(R−k−l−1

k (f))
)

= v−k−2l−2(−(k + l + 1)(l + 2) + k + 2l + 2)R−k−l−1
k (f)

= −(k + l)(l + 1)v−k−2l−2R−k−l−1
k (f).

Thus we get

Fk(Fk(f)) =
l!

(−k)!(−k − l)!
v−kR−k−l−1

k+2l

(
−(k + l)(l + 1)v−k−2l−2R−k−l−1

k (f)
)

=
l!(−k − l)(l + 1)

(−k)!(−k − l)!
v−kR−k−l−1

k+2l

(
v−k−2l−2R−k−l−1

k (f)
)

=
(l + 1)!

(−k)!(−k − l − 1)!
v−kR−k−l−1

k+2l

(
−(k + l)(l + 1)v−k−2l−2R−k−l−1

k (f)
)
.

Thus by induction we have proved (4.14). For l = −k, (4.14) gives

Fk(Fk(f)) =
(−k)!

(−k)!
v−k(vkf) = f.

We now prove (iv). First observe that R1−k
k (Fk(f)) = R−k

(
R−kk (Fk(f))

)
. Using

(4.13) for g = R−kk (Fk(f)), we get

R1−k
k (Fk(f)) = ξk

(
v−kR−kk (Fk(f))

)
= −(−k)!ξk (Fk(Fk(f)))

= −(−k)!ξk(f).

Now by Bol’s identity we have

D1−k =
1

(−4π)1−kR
1−k
k = − 1

(4π)1−kR
1−k
k
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since k ∈ −2N0. Thus we finally get

D1−k(Fk(f)) =
(−k)!

(4π)1−k ξk(f).

To prove (iv), observe that since Fk(f) ∈ H !
k(Γ0(N)), thus it has a Fourier expan-

sion of the form

Fk(f(τ)) =
∑

n>>−∞

d+
f (n)qn + d−f (0)v1−k +

∑
n<<∞
n6=0

d−f (n)Γ(1− k,−4πnv)qn.

By Theorem 4.19 (iv) for appropriate weight, we have

ξk (Fk(f)) = (k − 1)d−f (0)− (4π)k−1
∑

n>>−∞
n6=0

d−f (−n)

nk−1
qn. (4.15)

By Theorem 4.16 (iv) with appropriate weight and using (iii) above, we have

ξk (Fk(f)) =
(4π)1−k

(−k)!
D1−k(Fk(f)) = −(k − 1)c−f (0) +

(4π)k−1

(−k)!

∑
n>>−∞
n6=0

c−f (−n)

nk−1
qn.

(4.16)

Comparing coefficients in (4.15) and (4.16), we get

for n 6= 0 d−f (n) = −
c+
f (n)

(−k)!
and d−f (0) = −c−f (0). (4.17)

Again using Theorem 4.16 (iv) for appropriate weight, we get

D1−k(Fk(f)) = −(1− k)!

(4π)1−k d
−
f (0) +

∑
n>>−∞
n6=0

d+
f (n)

nk−1
qn. (4.18)

By Theorem 4.19 (iv) with appropriate weight and using (iv) above, we have

D1−k(Fk(f)) =
(−k)!

(4π)1−k ξk(f) =
(1− k)!

(4π)1−k c
−
f (0)− (−k)!

∑
n>>−∞
n6=0

c+
f (−n)

nk−1
qn. (4.19)
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Comparing coefficients in (4.18) and (4.19), we get

for n 6= 0 d+
f (n) = −(−k)!c+

f (n). (4.20)

Finally using Theorem 4.14 we see that

Fk(c
+
f (0)) = − v−k

(−k)!
R−kk (c+

f (0)) = − v−k

(−k)!

(k)−k
v−k

c+
f (0)

= −k(k + 1) . . . (k − k − 1)

(−k)!
c+
f (0)

= −(−1)k(−k)(−k − 1) . . . (−1)

(−k)!
c+
f (0) = −c+

f (0).

Thus we have

d+
f (0) = −c+

f (0). (4.21)

Using (4.17), (4.20) and (4.21), we get

Fk(f(τ)) = −c−f (0)v1−k − (−k)!
∑

n>>−∞
n 6=0

c−f (−n)qn

−c+
f (0)− 1

(−k)!

∑
n<<∞
n6=0

c+
f (−n)Γ(1− k,−4πnv)qn.

We are now ready to prove the surjectivity of the Bol operator in Theorem 4.16

(iv). Let f ∈ M !
k(Γ0(N)). Then since ξ2−k : H !

2−k(Γ0(N)) � M !
k(Γ0(N)) is

surjective by Theorem 4.19 (iii), ∃f̃ ∈ H !
2−k(Γ0(N)) such that ξ2−k(f̃) = f . Since

k ≥ 2 in Theorem 4.19, thus 2 − k ≤ 0 and 2 − k ∈ −2N0 as −I ∈ Γ0(N) which

implies there are no harmonic Maass forms of odd weight due to modularity. Thus

g = F2−k(f̃) ∈ H !
2−k(Γ0(N)). By Theorem 4.22 (iv)

Dk−1(g) =
(k − 2)!

(4π)k−1
f.
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Put

g̃ =
(4π)k−1

(k − 2)!
g.

Then Dk−1(g̃) = f.

4.4 Mock-modular forms and shadows

Definition 4.23. (i) A mock modular form of weight 2− k is the holomorphic

part f+ of a harmonic Maass form of weight 2−k for which f− is non trivial.

(ii) If f ∈ H2−k(Γ0(N)), we refer to the cusp form

ξ2−k(f(τ)) = −(4π)k−1

∞∑
n=1

c−f (−n)nk−1qn

as the shadow of the mock modular form f+.

(iii) Given a mock modular form f , the harmonic Maass form f̂ of which f is the

holomorphic part, is called the completion of f .

(iv) We refer to a mock modular form of weight 1/2 or 3/2 whose shadow is a

linear combination of unary theta functions as a mock theta function.

Remark 4.24. If f ∈ H !
2−k(Γ0(N)) then we refer to the modular form ξ2−k(f) as

the shadow of f .

Given a mock modular form and its shadow, the corresponding nonholomorphic

part can be determined using next Theorem.

Theorem 4.25. Let f ∈ H2−k(Γ0(N)) and suppose the mock modular form f+

has shadow g(τ) =
∞∑
n=1

cg(n)qn ∈ Sk(Γ0(N)). Then the nonholomorphic part f−

satisfies

f−(τ) = 21−ki

i∞∫
−τ

gc(τ)

(−i(ω + τ))2−k dω

where gc(τ) := g(−τ) =
∞∑
n=1

cg(n)qn.
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Proof. First observe that

i(2πn)1−kΓ(k − 1, 4πnv)q−n = i(2πn)1−k

 ∞∫
4πnv

e−ttk−2dt

 e−2πinτ .

Substitute ω = it
2πn

then dω = i
2πn

dt. We get

i(2πn)1−kΓ(k − 1, 4πnv)q−n = i(2πn)1−k

 i∞∫
2iv

e2πinω

(
2πn

i
ω

)k−2(
2πn

i

)
dω

 e−2πinτ

=
1

ik−2

i∞∫
2iv

e2πin(ω−τ)ωk−2dω

=

i∞∫
2iv

e2πin(ω−τ)

(−iω)2−k dω

=

i∞∫
−τ

e2πinω

(−i(ω + τ))2−k dω

where the last equality comes by replacing ω − τ by ω. Now we have

21−ki

i∞∫
−τ

gc(τ)

(−i(ω + τ))2−k dω = 21−ki

i∞∫
−τ

∞∑
n=1

cg(n)e2πinω

(−i(ω + τ))2−k dω

= 21−ki
∞∑
n=1

cg(n)

i∞∫
−τ

e2πinω

(−i(ω + τ))2−k dω

= 21−ki
∞∑
n=1

cg(n)i(2πn)1−kΓ(k − 1, 4πnv)q−n.
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By Theorem 4.19 (ii), we have cg(n) = −(4π)k−1c−f (−n)nk−1. Thus we have

21−ki

i∞∫
−τ

gc(τ)

(−i(ω + τ))2−k dω =
∞∑
n=1

c−f (−n)Γ(k − 1, 4πnv)q−n

=
∑
n<0

c−f (n)Γ(k − 1,−4πnv)qn = f−(τ).

4.5 Examples

We will discuss two examples of harmonic Maass forms.

The Eisenstein series E∗2(τ)

We have the Eisenstein series

E2(τ) = 1− 24
∞∑
n=1

σ1(n)qn.

Definition 4.26. (The Eisenstein series of weight 2) For τ ∈ H, the non-holomorphic

weight-2 Eisenstein series E∗2(τ) is defined by

E∗2(τ) = E2(τ)− 3

πv
where τ = u+ iv.

Theorem 4.27. The non-holomorphic weight-2 Eisenstein series E∗2(τ) is a har-

monic Maass form of weight 2 for the group SL2(Z). Moreover the mock modular

form E2(τ) has shadow 3/π.

Proof. Let us first show modularity. Let γ =

(
a b

c d

)
∈ SL2(Z). Then by Theo-

rem 3.28 we have

E2

(
aτ + b

cτ + d

)
= (cτ + d)2E2(τ) +

6c(cτ + d)

πi
.
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Using this transformation rule, we have

E∗2

(
aτ + b

cτ + d

)
= E2

(
aτ + b

cτ + d

)
− 3

πIm(γτ)

= (cτ + d)2E2(τ) +
6c(cτ + d)

πi
− 3|cτ + d|2

πv

= (cτ + d)2

[
E2(τ)− 6ic

π(cτ + d)
− 3(cτ + d)

πv(cτ + d)

]
= (cτ + d)2

[
E2(τ)− 1

(cτ + d)

(
6icv + 3cu− 3civ + 3d

πv

)]
= (cτ + d)2

[
E2(τ)− 3

πv

]
= (cτ + d)2E∗2(τ).

Next, observe that

∆2(E∗2(τ)) = ∆2(E2(τ))−∆2(
3

πv
) = 0 + v2 ∂

2

∂v2

3

πv
+−2ivi

∂

∂v

3

πv

= 2v2 3

πv3
− 2v

3

πv2
= 0.

since E2(τ) is holomorphic on H. Moreover observe that lim
v→∞

E∗2(τ) = 1 = O(eεv)

for any ε > 0. Thus E∗2(τ) ∈ H !
2(SL2(Z)). Lastly we need to check that

ξ2(E∗2(τ)) = 3
π
. Indeed

ξ2(E∗2(τ)) = ξ2

(
− 3

πv

)
= −2iv2 ∂

∂τ

3

πv
= iv2i

∂

∂v

3

πv
=

3

π
.

Zagier’s 3/2−weight nonholomorphic Eisenstein series

Let us first define the Hurwitz class number[26].

Definition 4.28. (Hurwitz class number) For integer N ≥ 0, the Hurwitz class

number is defined as follows : H(0) = − 1
12

. If N ≡ 1 or 2(mod4) then H(N) = 0.

Otherwise H(N) is the number of classes of binary quadratic forms of discriminant

−N , except that those classes which have a representative which is a multiple of

x2 + y2 should be counted with weight 1/2 and those which have a representative
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which is a multiple of x2 + xy + y2 should be counted with weight 1/3.

Theorem 4.29. (Zagier) Let H(n) be the Hurwitz class number. Then the func-

tion

H(τ) := − 1

12
+
∞∑
n=1

H(n)qn +
1

4
√
π

∞∑
n=1

nΓ

(
−1

2
, 4πn2v

)
q−n

2

+
1

8π
√
v

where τ = u+ iv is a 3/2−weight harmonic Maass form of manageable growth on

Γ0(4). Moreover we have ξ3/2(H) = − 1
16

Θ where Θ(τ) :=
∑
n∈Z

qn
2

is the classical

theta function.



5. JACOBI FORMS AND SIEGEL

MODULAR FORMS

Jacobi forms are holomorphic functions in two variables with some modularity

conditions and elliptic property with respect to some modular group and some

lattice respectively. We will discuss these concepts more precisely in a while. The

motivation to study Jacobi forms comes from two different considerations. The

first is a systematic study of Siegel modular forms which we will discuss in sections

to come. Jacobi forms appear naturally in Siegel modular forms. Secondly, the

study of the generating functions for the representation of numbers by quadratic

forms motivates the idea of Jacobi forms. These generating functions were first

studied by Jacobi and hence the name of the subject is derived. Most of the

material in this chapter can be found in [8, 9].

5.1 Jacobi theta function

We will briefly discuss Jacobi theta function which will motivate the first definition

of Jacobi forms. The proofs of the results discussed in this section can be found

in section 6 of Chapter VII of [25].

Definition 5.1. (i) (Lattice) For n R−linearly independent complex numbers

ω1, ω2, . . . , ωn, the additive group

L = L(ω1, ω2, . . . , ωn) :=

{
n∑
i=1

xiωi : xi ∈ Z

}

is called the lattice of rank n generated by ω1, ω2, . . . , ωn.
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(ii) (Fundamental Parallelepiped) Let L be a lattice of rank n. Then the set

P(L) :=

{
n∑
i=1

xiωi : 0 ≤ xi < 1

}

is called the fundamental parallelepiped.

(iii) (Determinant of lattice) The determinant det(L) of the lattice L is defined as

the volume of the fundamental parallelepiped P(L). L is called unimodular

if det(L) = 1.

(iv) (Dual lattice) Given a lattice L and a quadratic form (., .) : L×L −→ Z, its

dual lattice L∗ is defined as

L∗ := {ω ∈ L : (ω, v) ∈ Z ∀ v ∈ L}.

L is called self-dual if L∗ = L.

Theorem 5.2. Given a lattice L, it is self-dual if and only if it is unimodular if

and only if its rank is divisible by 8.

Definition 5.3. A lattice L is called an integral, even, positive-definite quadratic

lattice if

(i) L ∼= Zn; n > 0.

(ii) For a quadratic form (., .) : L× L −→ Z, (v, v) ∈ 2Z ∀ v ∈ L.

(iii) (v, v) > 0 ∀ v ∈ L \ {0}.

Put

rL(2n) = #{v ∈ L : (v, v) = 2n}.

Then for every n ∈ Z, rL(2n) <∞.

Definition 5.4. Given an integral, positive-definite, even quadratic lattice L and

τ ∈ H, define the theta function for L as

ϑL(q) :=
∑
n≥0

rL(2n)qn; q = e2πinτ . (5.1)
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With this definition we have

ϑL(q) =
∑
n≥0

eπi(v,v)τ = ϑL(τ).

Theorem 5.5. The theta function ϑL(τ) defines a holomorphic function on H.

Moreover it satisfies the following transformation property:

(i) ϑL(τ + 1) = ϑL(τ).

(ii) ϑL
(
− 1
τ

)
=
(
τ
i

)n/2
(det(L))−1/2ϑL∗(τ).

Theorem 5.5 along with (5.1) shows that ϑL(τ) is a modular form for SL2(Z) of

weight n/2 if L is self-dual.

For m ∈ Z, m > 0, let u ∈ L be such that (u, u) = 2m. For n, l ∈ Z, put

rL,u(n, l) := #{v ∈ L : (v, v) = 2n; (v, u) = l}.

Observe that rL,u(n, l) = 0 ⇔ (4nm − l2) < 0. To see this let v ∈ L be such

that (v, v) = 2n and (v, u) = l. Consider the restriction of the quadratic form

(., .)|L′ : L′ −→ L′ where L′ :=Span{u, v}. Then the matrix of the quadratic form

(., .)|L′ is (
(v, v) (v, u)

(u, v) (u, u)

)
=

(
2n l

l 2m

)
.

Since the quadratic form is positive-definite, its determinant (4nm − l2) ≥ 0. So

if (4nm− l2) < 0 then rL,u(n, l) = 0.

Definition 5.6. Given an integral, positive-definite, even quadratic lattice L, τ ∈
H, z ∈ C,m ∈ Z, m > 0 and u ∈ L such that (u, u) = 2m, define the Jacobi theta

function for L as

ϑmL,u(τ, z) :=
∑
v∈L

eπi((v,v)τ+2(v,u)z) =
∑
n,l∈Z

(4nm−l2)≥0

rL,u(n, l)e
2πi(nτ+lz).

The following result is Theorem 7.1 of [8].
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Theorem 5.7. The Jacobi theta function ϑmL,u(τ, z) defines a holomorphic function

on H×C. Moreover if L is self-dual, even rank lattice then ϑmL,u(τ, z) satisfies the

following transformation property:

(i) ϑmL,u
(
aτ+b
cτ+d

, z
cτ+d

)
= (cτ + d)n/2e2πim cz2

cτ+dϑmL,u(τ, z), ∀

(
a b

c d

)
∈ SL2(Z),

τ ∈ H, z ∈ C.

(ii) ϑmL,u(τ, z + λτ + µ) = e−2πim(λ2τ+2λz)ϑmL,u(τ, z), ∀(λ, µ) ∈ Z2.

This kind of a transformation property is the essence of Jacobi forms. We now

define Jacobi forms precisely.

5.2 First definition of Jacobi forms

Definition 5.8. Let k,m ∈ Z, m ≥ 0. Let ϕ : H × C → C be a holomorphic

function which satisfies the following properties:

(i)

ϕ

(
aτ + b

cτ + d
,

z

cτ + d

)
= (cτ + d)ke

(
mcz2

cτ + d

)
ϕ(τ, z) ∀τ ∈ H, z ∈ C,(

a b

c d

)
∈ SL2(Z)

(5.2)

where e(t) = e2πit. This is called modular invariance.

(ii)

ϕ(τ, z + λτ + µ) = e(−m(λ2τ + 2λz))ϕ(τ, z) ∀λ, µ ∈ Z (5.3)

This is called Elliptic invariance.

(iii) Using T =

(
1 1

0 1

)
in (i) gives ϕ(τ +1, z) = ϕ(τ, z) and Using (λ, µ) = (0, 1)

in (ii) gives ϕ(τ, z + 1) = ϕ(τ, z). Thus we get a Fourier expansion of the

form

ϕ(τ, z) =
∑
n,r∈Z

c(n, r)qnζr
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where q = e2πiτ , ζ = e2πiz. ϕ is called a holomorphic (cusp or weak) Jacobi

form of weight k and index m if

c(n, r) = 0 unless (4nm− r2) ≥ 0 (holomorphic)

(4nm− r2) > 0 (cusp)

n ≥ 0 (weak)

n ≥ n0 (possibly negative) (weakly holomorphic).

(5.4)

Notations 5.9. We denote by Jk,m, Jcusp
k,m , Jw

k,m and J!w
k,m the space of holomorphic,

cusp, weak and weakly holomorphic Jacobi forms of weight k and index m re-

spectively. If we allow ϕ to have poles in H × C and at i∞ then we call ϕ as

meromorphic Jacobi form.

Corollary 5.10. For a self-dual lattice L, the Jacobi theta function in definition

5.6 is a holomorphic Jacobi form of weight n/2 and index m.

Let ϕ(τ, z) ∈ Jk,m and put z = 0. By Definition 5.6 we get

ϕ

(
aτ + b

cτ + d
, 0

)
= (cτ + d)kϕ(τ, 0) ∀τ ∈ H,

(
a b

c d

)
∈ SL2(Z)

ϕ(τ, 0) =
∑
n∈Z

 ∑
(4nm−r2)≥0

c(n, r)

 qn

Since m > 0 thus (4nm − r2) ≥ 0 implies n ≥ 0 (n < 0 =⇒ (4nm − r2) ≤ 0).

Thus

ϕ(τ, 0) =
∑
n≥0

c(n)qn; c(n) =
∑
n∈Z

(4nm−r2)≥0

c(n, r)

Thus ϕ(τ, 0) ∈Mk(SL2(Z)). Conversely we ask the following question

Questions 5.11. Given f ∈ Mk(SL2(Z)), does there exist ϕ(τ, z) ∈ Jk,m such

that ϕ(τ, 0) = f?
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This question has a positive answer and we will deal with this question later.

More generally, we ask the following question.

Questions 5.12. Given ϕ(τ, z) ∈ Jk,m, what modular properties does ϕ
(
τ, 1

2

)
,

ϕ
(
τ, z+1

2

)
, ϕ(τ, qτ + p) satisfy where (q, p) ∈ Q2?

To answer this question we need a more refined definition of Jacobi forms. Specif-

ically we need to define the transformation conditions in terms of the stroke op-

erator with respect to the Jacobi modular group. This is the content of the next

section.

5.3 Second defintion of Jacobi forms

The definition using stroke operator is closely related to the theory of Siegel mod-

ular forms. We will study Siegel modular forms systematically in later sections.

For now we will just need some terminology. Let us first define the Siegel modular

group of degree n.

Spn(Z) := {g ∈ GL2n(Z) : gJgt = J}

where J =

(
0 −In
In 0

)
with In the n × n identity matrix. Define the following

subgroup of Sp2(Z)

ΓJ :=




∗ 0 ∗ ∗
∗ 1 ∗ ∗
∗ 0 ∗ ∗
0 0 0 1

 ∈ Sp2(Z)

 .

It can easily be checked that ΓJ is a subgroup of Sp2(Z). The group ΓJ is called

the Jacobi modular group. SL2(Z) can be embedded in ΓJ as follows:
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(
a b

c d

)
7→

[(
a b

c d

)]
:=


a 0 b 0

0 1 0 0

c 0 d 0

0 0 0 1

 ∈ ΓJ .

Moreover

M =


a 0 b ∗
∗ 1 ∗ ∗
c 0 d ∗
0 0 0 1

 ∈ ΓJ =⇒

(
a b

c d

)
∈ SL2(Z).

Define another subgroup of ΓJ , the Heisenberg group as follows:

H(Z) :=


[(

p

q

)
, r

]
:=


1 0 0 p

−q 1 p r

0 0 1 q

0 0 0 1

 ∈ ΓJ

 < ΓJ .

Remark 5.13. Let

M =


a 0 b 0

0 1 0 0

c 0 d 0

0 0 0 1

 ∈ ΓJ then

[(
a b

c d

)]−1

M =


1 0 0 p

−q 1 p r

0 0 1 q

0 0 0 1

 ∈ H(Z).

Thus ΓJ = SL2(Z) ·H(Z).

Properties of the Heisenberg group

1.

[(
p

q

)
, r

][(
p′

q′

)
, r′

]
=

[(
p+ p′

q + q′

)
, r + r′ + det

(
p p′

q q′

)]
. Thus H(Z) is

not commutative.

2.

[(
p

q

)
, r

]−1

=

[(
−p
−q

)
,−r

]
.
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3. Let h =

[(
p

q

)
, r

]
and h′ =

[(
p′

q′

)
, r′

]
, then hh′h−1h′−1 =[(

0

0

)
, 2det

(
p p′

q q′

)]
. Thus the first commutator subgroup of the Heisen-

berg group is [H(Z), H(Z)] =

{[(
0

0

)
, 2r

]
: r ∈ Z

}
.

4. The center of H(Z) is Z (H(Z)) =

{[(
0

0

)
, r

]
: r ∈ Z

}
.

5. H(Z) is the central extension of Z× Z:

0 −→ Z f−→ H(Z)
g−→ Z× Z −→ 0

where f(r) =

[(
0

0

)
, r

]
and g

([(
p

q

)
, r

])
= (p, q).

6. SL2(Z) acts on H(Z) as follows:

M ∈ SL2(Z) : [M ]

[(
p

q

)
, r

]
[M ] =

[
M

(
p

q

)
, r

]

7. H(Z) E ΓJ and ΓJ = SL2(Z) nH(Z).

8. The map νH : H(Z) −→ {±1} given by

[(
p

q

)
, r

]
7→ (−1)p+q+pq+r is a

character of the Heisenberg group. This is called the binary character. We

have νH(ghg−1) = νH(h) ∀ g ∈ SL2(Z).

Let us now define the Siegel upper half space.

Definition 5.14. For n ∈ Z, n ≥ 1, define the Siegel upper half space of genus n

Hn := {Z = X + iY ∈Mn(C) : Zt = Z, Y > 0}
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where Y > 0 means that the matrix Y is positive definite. In particular H2 ={
Ω =

(
τ z

z σ

)
: τ, σ ∈ H; z ∈ C, det(Im(Ω)) > 0

}
.

We now define the action of the Spn(Z) on Hn. Before that, we need a Lemma,

the proof of which is straightforward computation. Hence we will skip the proof.

Lemma 5.15. Let M =

(
A B

C D

)
∈ GL2n(Z) with A,B,C,D ∈Mn(Z). Then

(i) M ∈ Spn(Z) if and only if AtC = CtA,BtD = DtB,AtD − CtB = In if and

only if ABt = BAt, CDt = DCt, ADt −BCt = In.

(ii) M t ∈ Spn(Z) if M ∈ Spn(Z).

(iii) M−1 =

(
Dt −Bt

−Ct At

)
∈ Spn(Z) if M ∈ Spn(Z).

Using Lemma 5.15 we can prove the following Theorem:

Theorem 5.16. For M =

(
A B

C D

)
∈ Spn(Z) and Z ∈ Hn, the map

ϕ : Spn(Z)×Hn −→ Hn defined by

(M,Z) 7→M ◦ Z := (AZ +B)(CZ +D)−1

defines a group action of Spn(Z) onto Hn.

Let us define the stroke operator for functions on Hn. Let f : Hn −→ C be a

function and M =

(
A B

C D

)
∈ Spn(Z). Define the weight-k stroke operator as:

(f |kM) := det(CZ +D)−kf(M ◦ Z). (5.5)

It can be checked that this definition of stroke operator satisfies (f |kM1M2) =

(f |kM1)|kM2. We would now like to study the action of ΓJ on H2 and the corre-

sponding stroke operator. Let Z =

(
τ z

z ω

)
∈ H2 and M =

(
a b

c d

)
∈ SL2(Z).



5. Jacobi Forms and Siegel modular forms 76

Then we have

[(
a b

c d

)]
◦ Z =


a 0 b 0

0 1 0 0

c 0 d 0

0 0 0 1

 ◦
(
τ z

z ω

)
=

(
aτ + b az

z ω

)(
cτ + d cz

0 1

)−1

=

(
aτ + b az

z ω

)(
1

cτ+d
−cz
cτ+d

0 1

)
=

(
aτ+b
cτ+d

z
cτ+d

z
cτ+d

ω − cz2

cτ+d

)

For h =

[(
p

q

)
, r

]
∈ H(Z) we have

h ◦ Z =


1 0 0 p

−q 1 p r

0 0 1 q

0 0 0 1

 ◦
(
τ z

z ω

)
=

(
τ τ + p

qτ + z + p qz + ω + r

)(
1 −q
0 1

)−1

=

(
τ z + qτ + p

z + qτ + p q2τ + 2qz + pq + ω + r

)

Let ϕ(τ, z) be a function on H× C then ∃ ω ∈ H such that

(
τ z

z ω

)
∈ H2. Thus

ϕ(τ, z)e2πiωm is a function on H2. Applying the stroke operator of (5.5), we get

(
ϕ(τ, z)e2πiωm

) ∣∣
k
[M ] = (cτ + d)−ke−2πim cz2

cτ+dϕ

(
aτ + d

cτ + d
,

z

cτ + d

)
e2πiωm (5.6)

and (
ϕ(τ, z)e2πiωm

) ∣∣
k
h = e2πim(q2τ+2qz+pq+r)ϕ(τ, z + qτ + p)e2πiωm. (5.7)

Using (5.6) and (5.7) we will now define the stroke operator for Jacobi forms.

Definition 5.17. Let ϕ : H×C→ C; k,m ∈ Z,m ≥ 0, For (τ, z) ∈ H×C ∃! ω ∈ H

such that

(
τ z

z ω

)
∈ H2. For g ∈ ΓJ define

ϕ|k,mg :=
((
ϕ(τ, z)e2πiωm

) ∣∣
k
g
)
e−2πiωm.
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The stroke operator |k,m satisfies the following properties:

(i) ϕ|k,mg depends only on τ and z.

(ii) (ϕ|k,mg1g2) = (ϕ|k,mg1)|k,mg2.

We will now give the second definition of Jacobi forms. First observe that the

transformation (i) in Definition 5.8 is equivalent to

ϕ|k,m

[(
a b

c d

)]
= ϕ(τ, z) ∀

(
a b

c d

)
∈ SL2(Z)

and the transformation (ii) in Definition 5.8 is equivalent to

ϕ|k,m

[(
p

q

)
, r

]
= ϕ(τ, z) ∀ (p, q) ∈ Z2.

Since ΓJ = SL2(Z)nH(Z), thus these transformations are equivalent to ϕ|k,mg =

ϕ ∀ g ∈ ΓJ . Further, we can translate the Fourier expansion for holomorphic

Jacobi form in (5.4) in terms of the variable Z ∈ H2 as follows:

ϕ(τ, z)e2πimω =
∑
T≥0

af (T )e2πi trace(TZ) (5.8)

where the sum runs over all positive semi-definite matrices of the form T =(
n r/2

r/2 m

)
; n, r ∈ Z. To see this observe that for T =

(
n r/2

r/2 m

)
, we have

e2πi trace(TZ) = e2πi(nτ+rz+mω) = qnζre2πimω and T ≥ 0⇔ n,m ≥ 0 and nm−r2/4 ≥
0. Thus using (5.4) for holomorphic Jacobi form, we get (5.8) with af (T ) = c(n, r).

Definition 5.18. A holomorphic function ϕ : H×C→ C is a holomorphic Jacobi

form of weight k ∈ Z and index m ∈ Z,m ≥ 0 if ϕ|k,mg = ϕ ∀ g ∈ ΓJ and ϕ has a

Fourier expansion of the form (5.8).

The proof of the following Theorem is a trivial exercise using elliptic invariance of

ϕ.

Theorem 5.19. Let ϕ be an Jacobi (holomorphic, weak or cusp) form of index m

and weight-k with Fourier expansion ϕ(τ, z) =
∑
n,r

c(n, r)qnζr. Then c(n, r) depends
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only on 4mn − r2 and r(mod 2m). If k is even and m = 1 or m is prime, then

c(n, r) depends only on 4mn− r2. If m = 1 and k odd, then φ is identically zero.

Remark 5.20. Theorem 5.19 shows that c(n + mk2 + k, r + 2mk) = c(n, r) for

every k ∈ Z. In particular, c(n, r) = c(4mn− r2, r).

5.4 Special values of Jacobi forms

We will answer Question 5.12 in this section. Put X =

(
p

−q

)
∈ Q2 then

ϕ(τ, z)|k,m[X, 0] = e2πim(q2τ+2qz+pq)ϕ(τ, z + qτ + p).

Put z = 0 then

ϕX(τ) := (ϕ(τ, z)|k,m[X, 0])
∣∣
z=0

= e2πim(q2τ+pq)ϕ(τ, qτ + p).

Put

ΓX :=
{
M ∈ SL2(Z) : MX ≡ X(mod Z2)

}
where forM =

(
a b

c d

)
, MX ≡ X(mod Z2) means

(
a b

c d

)(
p

−q

)
=

(
ap− bq
cp− dq

)
≡(

p

−q

)
(mod Z2) =⇒ ap− bq − p, cp− dq + q ∈ Z. It can be checked that ΓX is

a congruence subgroup of SL2(Z) with level N =minimum positive integer such

that NX ∈ Z2.

Theorem 5.21. Let ϕ ∈ Jk,m, X =

(
p

−q

)
∈ Q2 then the function ϕX(τ) =

e2πim(q2τ+pq)ϕ(τ, qτ + p) is a modular form of weight k with respect to ΓX with a

character χX(M) = e2πi det(MX,X) where MX and X are the columns of the matrix

(MX,X).

Proof. We analyse the modular behaviour of (ϕ|k,m[X, 0])
∣∣
k,m

[M ] for M ∈ SL2(Z).
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Observe that

[X, 0][M ] = [M ]
(
[M ]−1[X, 0][M ]

)
and ϕ|k,m[M ] = ϕ

=⇒ (ϕ|k,m[X, 0])
∣∣
k,m

[M ] = (ϕ|k,m[M ])
∣∣
k,m

(
[M ]−1[X, 0][M ]

)
= ϕ

∣∣
k,m

(
[M−1X, 0]

)
∀ M ∈ SL2(Z).

where we used Property 6 of the Heisenberg group. Now, for M ∈ ΓX ,MX−X ∈
Z2, thus

ϕ|k,m[M−1X −X, 0] = ϕ. Observe that

[M−1X, 0] = M−1X, 0][X, 0]−1[X, 0] = [M−1X −X,−det(M−1X,X)][X, 0]

= [M−1X −X, 0][0,−det(M−1X,X)][X, 0].

Thus

ϕk,m[M−1X, 0] = e2πidet(MX,X)ϕ|k,m[X, 0].

Thus we get

(ϕ|k,m[X, 0])
∣∣
k,m

[M ] = χX(M)ϕ|k,m[X, 0] ∀ M ∈ ΓX (5.9)

where χX(M) = e2πidet(MX,X) is a character of the group ΓX . The modular equa-

tion (5.9) for z = 0 gives

ϕX(τ)|kM = χX(M)ϕX ∀ M ∈ ΓX .

We now analyse the Fourier expansion of ϕX .

ϕX(τ) = e2πim(q2τ+pq)ϕ(τ, qτ + p)

= e2πim(q2τ+pq)
∑

(4nm−r2)≥0

c(n, r)e2πi(nτ+r(qτ+p))

= e2πimpq
∑

(4nm−r2)≥0

c(n, r)e2πirpe2πi(mq2+rq+n)τ

but for Q(x) = mx2 + rx + n, the discriminant is D = r2 − 4mn ≤ 0. Thus

Q(x) ≥ 0 as m ≥ 0. Thus mq2 + rq + n ≥ 0. Thus ϕX is holomorphic at i∞. We
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further need to analyse the Fourier expansion of ϕX at other cusps of ΓX . Observe

that for M ∈ SL2(Z),

ϕX |kM = (ϕ|k,m[X, 0])
∣∣
k,m

[M ]
∣∣
z=0

=
(
ϕk,m[M−1X, 0]

) ∣∣
z=0

.

Put X ′ = M−1X =

(
p′

q′

)
∈ Q2. Then we just need to analyse Fourier expansion

of ϕX′ at i∞ and similar calculation shows that

(ϕX |kM) (τ) =
∑
n≥0

a(n)qn.

Thus ϕX is holomorphic at all cusps of ΓX .

Remark 5.22. The analysis of the Fourier expansion of ϕX in above Theorem

shows that c(n, r) = 0 unless (4nm− r2) ≥ 0⇔ ∀ X ∈ Q2, ϕX(τ) is holomorphic

at i∞.

5.5 The zeros of elliptic functions

In this section we will quantify the zeros of functions which satisfy elliptic invari-

ance. This in turn will help in proving the finite dimensionality of the space of

holomorphic Jacobi forms. For τ ∈ C, let Zτ + Z denote the lattice generated by

1 and τ .

Theorem 5.23. Let ϕ : C −→ C be a holomorphic function. For m ∈ Z and

τ ∈ H, suppose ϕ(z+λτ +µ) = e−2πim(λ2τ+2λz)ϕ(z) ∀λ, µ ∈ Z. If ϕ 6≡ 0 then ϕ(z)

has exactly 2m zeros in any fundamental parallelepiped of C/Zτ + Z.

Proof. Choose the fundamental parallelepiped Dz0 := {z0 + x+ iy : x, y ∈ [0, 1)}
such that ϕ does not vanish on ∂Dz0 . Then by argument principle we get

1

2πi

∫
∂Dz0

ϕ′(z)

ϕ(z)
dz = the number of zeros of ϕ(z).
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z0 + τ z0 + 1 + τ

ϕ′(z)
ϕ(z)

z0 + 1z0

−ϕ′(z)
ϕ(z)

Fig. 5.1: Contour for integral

By evaluating the integral along each side of the contour we get

1

2πi

∫
∂Dz0

ϕ′(z)

ϕ(z)
dz = 0− (−4πim)

2πi
= 2m.

Remark 5.24. (i) If ϕ is meromorphic then 2m = number of zeros – the num-

ber of poles.

(ii) If ϕ is holopmorphic then 2m ≥ 0. So m ≥ 0. This is why we define Jacobi

forms only for non-negative index.

(iii) For ϕ ∈ Jw
k,m, the map z 7→ ϕ(τ, z) satisfies the hypothesises of Theorem

5.23. Thus ϕ(τ, z) has exactly 2m zeros in any fundamental parallelepiped

of C/(Zτ + Z).

Proposition 5.25. Let ϕ be a function as in Theorem 5.23. Then ϕ is determined

upto a constant by its zeros.

Proof. Let ϕ and ψ have the same zeros. That is ϕ(z1) = ψ(z1) = 0 . . . ϕ(z2m) =

ψ(z2m) = 0. Then ∀ z0 /∈ {z1 . . . z2m}, ϕ(z0), ψ(z0) 6= 0. Consider the function

%(z) = ψ(z0)ϕ(z)−ϕ(z0)ψ(z). Then % again satisfies the hypothesises of Theorem
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5.23 but has at least 2m + 1 zeros (including z0). Then by Theorem 5.23 % ≡ 0.

Thus we get

ψ(z0)ϕ(z)− ϕ(z0)ψ(z) = 0 =⇒ ψ(z) =
ψ(z0)

ϕ(z0)
ϕ(z).

Thus any elliptic function of indexm is determined by its zeros upto a constant.

Remark 5.26. For ϕ ∈ Jw
k,0, then ϕ(τ, z) − ϕ(τ, 0) has a zero at z = 0. Thus by

Theorem 5.23, ϕ(τ, z) = ϕ(τ, 0). But ϕ(τ, 0) ∈Mk. Thus we proved that

Jk,0 ⊂ Jw
k,0 = Mk ⊂ Jk,0.

Theorem 5.27. Jk,m is a finite dimensional vector space.

Proof. It is easy to check that Jw
k,m is a vector space. For the finite dimension-

ality part, choose distinct Xi =

(
pi

−qi

)
∈ Q2, i = 1, 2, . . . , 2m + 1 such that

Xi 6≡ Xj(mod Z2). By Theorem 5.21, the map

Σ : ϕ ∈ Jk,m −→
2m+1⊕
i=1

Mk(ΓXi , χXi); Σ(ϕ(τ, z)) = (ϕXi(τ))2m+1
i=1

is well defined. Moreover we claim that this map is injective. To see this, suppose

Σ(ϕ1(τ, z)) = Σ(ϕ2(τ, z)) then ϕ1Xi
(τ) = ϕ2Xi

(τ). We claim that ϕ1(τ, z) =

ϕ2(τ, z). Indeed for a fixed τ ∈ H, there are 2m + 1 distinct zeros z = piτ + qi

of the elliptic function ψ := ϕ1(τ, z) − ϕ2(τ, z). Thus by Theorem 5.23, we have

that ψ ≡ 0 which implies ϕ1(τ, z) = ϕ2(τ, z). Thus ϕ is determined uniquely by

(ϕXi(τ))2m+1
i=1 . Thus

dim Jk,m ≤
2m+1∑
i=1

dim Mk(ΓXi , χXi) <∞

since Mk(ΓXi , χXi) is finite dimensional.
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5.6 Taylor expansion of Jacobi forms

Let ϕ ∈ Jk,m then it has a Fourier expansion of the form

ϕ(τ, z) =
∑
n∈Z

(4nm−r2)≥0

c(n, r)qnζr.

We want to study the Taylor expansion in z:

ϕ(τ, z) =
∑

d≥d0≥0

fd(τ)zd

where ordz=0ϕ(τ, z) = d0 is the order of the zero of ϕ at z = 0. We have

f0(τ) = ϕ(τ, 0) ∈Mk(SL2(Z)).

In general, we have fd(τ + 1) = fd(τ) using ϕ(τ + 1, z) = ϕ(τ, z). This gives the

Fourier expansion

fd(τ) =
∑
n≥0

c(n)qn.

In fact, we have a more specific Fourier expansion as in next Lemma.

Lemma 5.28. If d > 0 then fd(τ) =
∑
n>0

c(n)qn for some coefficients c(n).

Proof. If n = 0 then c(n, r) = 0 ∀ r 6= 0 since 4mn− r2 < 0 in this case. Thus any

power of zd; d > 0 in the Fourier expansion of ϕ coming from ζr = e2πirz comes

with a positive power of q.

fd is not a modular form in general for d > 0.

Proposition 5.29. ϕ ∈ Jk,m is determined uniquely by its first 2m + 1 Taylor

coefficients f0(τ), . . . , f2m(τ).

Proof. Suppose ϕ and ψ have the same first 2m + 1 Taylor coefficients. Then

ordz=0(ϕ−ψ) ≥ 2m+ 1 and index of ϕ−ψ is m. Thus by Proposition 5.25, ϕ−ψ
has atmost 2m zeros. But

ϕ(τ, z)− ψ(τ, z) =
∑

d≥2m+1

(fϕd − f
ψ
d )(τ)zd = z2m+1

∑
d≥0

(fϕd+2m+1 − f
ψ
d+2m+1)(τ)zd.
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Thus the zero z = 0 has multiplicity atleast 2m+ 1. Thus we must have ϕ(τ, z) =

ψ(τ, z).

Proposition 5.30. Let ϕ ∈ Jk,m then it has Taylor expansion of the shape

ϕ(τ, z) =
∑

d≡k(mod 2)
d≥0

fd(τ)zd.

Proof. For −I ∈ SL2(Z), the modularity gives ϕ(τ,−z) = (−1)kϕ(τ, z). The

Taylor expansion of ϕ(τ, z) has form

ϕ(τ, z) =
∑
d≥0

fd(τ)zd.

This gives

ϕ(τ,−z) =
∑
d≥0

(−1)dfd(τ)zd.

Thus using ϕ(τ,−z) = (−1)kϕ(τ, z), we get∑
d≥0

(−1)dfd(τ)zd = (−1)k
∑
d≥0

fd(τ)zd

=⇒
∑
d≥0

[(−1)d−k − 1]fd(τ)zd = 0

=⇒ d− k ∈ 2Z.

Thus we get the Taylor expansion of ϕ as

ϕ(τ, z) =
∑

d≡k(mod 2)
d≥0

fd(τ)zd.

Proposition 5.31. Let ϕ ∈ Jk,m. Then f0(τ) = ϕ(τ, 0) ∈ Mk(SL2(Z)). If

ϕ(τ, 0) ≡ 0 then fd0(τ) ∈ Sk+d0(SL2(Z)) where ordz=0ϕ(τ, z) = d0.
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Proof. For M =

(
a b

c d

)
∈ SL2(Z), we have

ϕ

(
aτ + b

cτ + d
,

z

cτ + d

)
= (cτ + d)ke2πimmcz2

cτ+dϕ(τ, z)

We substitute the Taylor expansion

∑
l≥0

fl(Mτ)
zl

(cτ + d)l
= (cτ + d)ke2πimmcz2

cτ+d

∑
l≥0

fl(τ)zl.

Comparing the dth0 coefficient, we get fd0(Mτ) = (cτ +d)k+d0fd0(τ). Thus fd0(τ) ∈
Mk+d0(SL2(Z)). Since d0 6= 0, thus by Lemma 5.28 we see that fd0 is indeed a

cusp form.

Theorem 5.32. J2,1 = {0} and dim J4,1, dim J6,1, dim J8,1 ≤ 1. Moreover

dim Jcusp6,3 , dim Jcusp10,1 , dim Jcusp8,2 ≤ 1.

Proof. Let ϕ(τ, z) ∈ J2k,1 then using Proposition 5.30 we have

ϕ(τ, z) = f0(τ) + f2(τ)z2 + f4(τ)z4 + . . .

where f0(τ) ∈ M2k = CE2k; 2k = 4, 6, 8, 10. If f0(τ) = 0, then f2(τ) ∈ S2k+2 =

{0}; 2k+2 < 12 as S12 6= {0}. For weight 2k = 4, 6, 8, ϕ(τ, z) ∈ J2k,1 is determined

by f0(τ) by Proposition 5.29 and for all cases f0(τ) is a multiple of E2k. Thus

dim J2k,1 ≤ 1 for 2k = 4, 6, 8. If 2k = 2 then M2k = {0}. Thus f0(τ) = 0 which

means f2(τ) ∈ S4 = {0} =⇒ f2(τ) = 0. Thus ordz=0(ϕ) ≥ 4. Thus by Theorem

5.23 ϕ ≡ 0. Thus J2,1 = {0}. Finally suppose ϕ6,3 ∈ Jcusp
6,3 . Then

ϕ6,3(τ, z) = f0(τ) + f2(τ)z2 + f4(τ)z4 + f6(τ)z6 + . . .

Then f0 ∈ S6 = {0} =⇒ f2 ∈ S8 = {0} =⇒ f4 ∈ S10 = {0}. We know that

S12 = C∆ where ∆ is the Ramanujan’s cusp form. Moreover ϕ6,3 is determined

upto a constant by f6(τ) = c∆(τ). Thus dim Jcusp
6,3 ≤ 1. Similar argument shows

that dim Jcusp
10,1 , dim Jcusp

8,2 ≤ 1.

In later sections we will prove that dim Jcusp
6,3 = dim Jcusp

10,1 = dim Jcusp
8,2 = 1 by
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explicitly constructing examples.

5.7 Jacobi-ϑ series and examples of Jacobi

forms

Let us first define the Jacobi theta series.

Definition 5.33. For τ ∈ H, z ∈ C, the series

ϑ(τ, z) :=
∑

n≡1(mod 2)
n∈Z

(−1)
n−1
2 e

πi
(
n2

4
τ+nz

)
=
∑
n∈Z

(
−4

n

)
qn

2/8ζn/2

where q = e2πiτ , ζ = e2πiz.

Using the Jacobi triple product formula

∞∏
n=0

(1− q2n+2)(1 + q2n+1x)

(
1 +

q2n+1

x

)
=
∑
n∈Z

qn
2

xn

one can prove that

ϑ(τ, z) = −q1/8ζ−1/2

∞∏
n=1

(1− qn−1ζ)(1 + qnζ−1)(1− qn).

The next Theorem shows that the Jacobi theta function defines a holomorphic

function on H× C.

Theorem 5.34. The Jacobi theta function ϑ(τ, z) converges absolutely and uni-

formly on compact subsets of H× C.

Proof. Let |Im(z)| < c and Im(τ) > ε then we have∣∣∣∣eπi(n24 τ+nz
)∣∣∣∣ < eπnc−πε

n2

4 = eπn(c−ε
n0
4 )eπεn

(n−n0)
4 <

(
e−πε

)n(n−n0)
4

where n0 > 4c/ε. Now absolute and uniform convergence follows by Weirstrass M

test.
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Lemma 5.35. ϑ(τ, 0) = 0 for any τ ∈ H.

Proof. First observe that

ϑ(τ,−z) =
∑
n∈Z

(
−4

n

)
qn

2/8ζ−n/2 =
∑
n∈Z

(
−4

−n

)
qn

2/8ζn/2

= −
∑
n∈Z

(
−4

n

)
qn

2/8ζn/2 = −ϑ(τ, z)

since
(−4
−n

)
= −

(−4
−n

)
. Putting z = 0, we get ϑ(τ, 0) = −ϑ(τ, 0) =⇒ ϑ(τ, 0) =

0.

Theorem 5.36. For λ, µ ∈ Z, we have

ϑ(τ, z + λτ + µ) = (−1)λ+µe−πi(λ
2τ+2λz)ϑ(τ, z).

This is called quasi-periodicity of the ϑ function.

Proof. We directly substitute series expansion on L.H.S. We get

∑
n∈Z

(
−4

n

)
e
πi

(
n2

4
τ+n(z+λτ+µ)

)
.

Observe that
(
n2

4
τ + n(z + λτ + µ)

)
=
(
n
2

+ λ
)2
τ − λ2τ + z(n + 2λ) − 2λz. Put(

n
2

+ λ
)

= N
2

. Then we get

ϑ(τ, z + λτ + µ) = (−1)µe−πi(λ
2τ+µ)

∑
n∈Z

(
−4

n

)
e
πi

(
N2

4
τ+Nz

)
.

But we also have that
(−4
n

)
= (−1)λ

( −4
n+2λ

)
= (−1)λ

(−4
N

)
and moreover N varies

over all Z. So we get

ϑ(τ, z + λτ + µ) = (−1)λ+µe−πi(λ
2τ+2λz)

∑
N∈Z

(
−4

N

)
e
πi

(
N2

4
τ+Nz

)

= (−1)λ+µe−πi(λ
2τ+2λz)ϑ(τ, z).



5. Jacobi Forms and Siegel modular forms 88

Proposition 5.37. ϑ(τ, z) = 0 if and only if z ∈ Zτ + Z. Moreover the order of

this zero is 1.

Proof. We will apply Theorem 5.23 to ϑ since it is an elliptic function of index

m = 1/2. The additional factor in elliptic invariance does not bother us as in the

proof of Theorem 5.23, we need the following equalities

ϑ(τ, z + 1)

ϑ(τ, z + 1)
=
−ϑz(τ, z)

−ϑ(τ, z)
=
ϑz(τ, z)

ϑ(τ, z)
,

ϑz(τ, z + τ)

ϑ(τ, z + τ)
=
−(ϑz(τ, z)− 2πiϑ(τ, z))e−πi(τ+z)

−ϑ(τ, z)e−πi(τ+z)
=
ϑz(τ, z)

ϑ(τ, z)
− 2πi.

Thus in any fundamental parallelepiped of C/(Zτ + Z), there is only one zero.

Thus order of any zero is one. Moreover by Lemma 5.35, ϑ(τ, 0) = 0. Thus we get

our result.

Proposition 5.38. ∂ϑ(τ,z)
∂z

∣∣
z=0

= 2πiη(τ)3.

Proof. The result follows by directly using the definition of ϑ function and Euler’s

Theorem 3.48.

We would now like to analyse the quasi-periodicity in terms of the Jacobi modular

group. Since the index of the theta function is 1/2, we will analyse ϑ(τ, z)eπiω

where

(
τ z

z ω

)
∈ H2. Observe that

(
ϑ(τ, z)eπiω

∣∣
k

) [(µ
λ

)
, 0

]
= eπi(λ

2τ+2λz+λµ)ϑ(τ, z + λτ + µ)eπiω

= (−1)λ+µ+λµϑ(τ, z)eπiω

where we used Theorem 5.36. Thus we see that the initial factor (−1)λ+µ is actually

the binary character νH of the Heisenberg group.

Theorem 5.39. For τ ∈ H and z ∈ C we have

ϑ(τ + 1, z) = e
πi
4 ϑ(τ, z) and ϑ

(
−1

τ
,
z

τ

)
= −

√
τ

i
eπi

z2

τ ϑ(τ, z).
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Proof. To prove the first relation, we just substitute the definition of theta func-

tion.

ϑ(τ + 1, z) =
∑

n≡1(mod 2)
n∈Z

(−1)
n−1
2 e

πi
(
n2

4
(τ+1)+nz

)
= e

πi
4

∑
n≡1(mod 2)

n∈Z

(−1)
n−1
2 e

πi
(
n2

4
τ+nz

)

= e
πi
4 ϑ(τ, z).

We will prove the second relation without using Poisson summation formula. We

will prove that

ϑ

(
−1

τ
, z

)
= −

√
τ

i
eπiz

2τϑ(τ, zτ)

which forz 7→ z
τ

will give us the desired property. Put ξτ (z) = eπiz
2τϑ(τ, zτ).

Observe that

ξτ (z + 1) = eπi(z+1)2τϑ(τ, zτ + τ) = (−1)eπi(z
2+2z+1)τe−πi(2τz+τ)ϑ(τ, zτ)

= −eπiz2τϑ(τ, zτ) = −ξτ (z)

and

ξτ

(
z − 1

τ

)
= eπi(z−

1
τ )

2
τϑ(τ, zτ − 1) = (−1)eπi(z

2−2 z
τ

+ 1
τ2

)τϑ(τ, zτ)

= −eπiz2τϑ(τ, zτ)e−πi(2z− 1
τ ) = −e−πi(2z− 1

τ )ξτ (z)

where we used the quasi-periodicity of the theta function twice. Hence ξτ (z) is

quasi periodic function for the lattice − 1
τ
Z + Z with index 1/2. Also ϑ

(
− 1
τ
, z
)

is

quasi periodic for the lattice − 1
τ
Z + Z with index 1/2. Moreover ϑ

(
− 1
τ
, z
)

and

ξτ (z) have the same zero (at z = 0). Thus by Proposition 5.25 we have

ϑ

(
−1

τ
, z

)
= c(τ)ξτ (z).

We now prove that c(τ) = −
√

τ
i
. To do this we would like to differentiate the

equation ϑ
(
− 1
τ
, z
)

= c(τ)ξτ (z) both sides with respect to z and evaluate it at
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z = 0. We get

∂

∂z
ϑ

(
−1

τ
, z

) ∣∣∣∣
z=0

= c(τ)
∂

∂z
eπiz

2τϑ(τ, zτ)

∣∣∣∣
z=0

=⇒ 2πiη

(
−1

τ

)3

= c(τ)
(

2πiτeπiz
2τϑ(τ, zτ)|z=0 + 2πiτeπiz

2τη(τ)3
)

=⇒
(√

τ

i

)3

η(τ)3 = τc(τ)η(τ)3

=⇒ c(τ) = −
√
τ

i
.

where we used Theorem 3.46, Lemma 5.35 and Proposition 5.38.

Noting that νη

((
1 1

0 1

))3

= e
πi
4 and νη

((
0 −1

0 1

))3

= −1 and using Theorem

5.39, following Corollary follows.

Corollary 5.40.

ϑ

(
aτ + b

cτ + d
,

z

cτ + d

)
= νη(M)3(cτ + d)1/2e

πi
(
cz2

cτ+d

)
ϑ(τ, z) ∀τ ∈ H, z ∈ C,

M =

(
a b

c d

)
∈ SL2(Z)

and

ϑ(τ, z + λτ + µ) = νH(h)e−πi(λ
2τ+2λz)ϑ(τ, z) ∀ h =

[(
µ

λ

)
, r

]
H(Z).

Finally we analyse the Fourier expansion of the Jacobi theta series. We have

ϑ(τ, z) =
∑
n∈Z

(
−4

n

)
qn

2/8ζn/2.

Note that c(n, r) = c
(
n2

8
, n

2

)
=
(−4
n

)
. Thus 4mn− r2 for these Fourier coefficients

is 4
(
n2

8

) (
1
2

)
− n2

4
= 0. Thus the Fourier expansion satisfies the holomorphicity
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condition. Thus using Property 8 of the Heisenberg group, we have the following

Theorem.

Theorem 5.41. The Jacobi theta series is a Jacobi modular form of weight 1/2

and index 1/2 with respect to the Jacobi modular group with charater νH and

multiplier system ν3
η .

Using the Jacobi theta series, we can construct several examples of Jacobi forms.

Example 5.42. (i) ϕ−2,1(τ, z) = ϑ2(τ,z)
η6(τ)

∈ Jweak
−2,1

To see this, first observe that weight of ϕ−2,1(τ, z) is 2 × 1
2
− 6 × 1

2
= −2.

Moreover η(τ) 6= 0, thus ϕ−2,1(τ, z) is holomorphic on H×C. Moreover, the

Fourier expansion of ϕ−2,1(τ, z) is of the form

ϕ−2,1(τ, z) = (ζ − 2 + ζ−1) + q(. . . ) + . . .

Thus ϕ−2,1 is a weak Jacobi form. In fact ϕ−2,1(τ, z) generates Jweak
−2,1 .

(ii) ϕ−1, 1
2
(τ, z) = ϑ(τ,z)

η3(τ)
is a weak Jacobi form of index 1/2 and weight −1 with a

character νH . It has a Fourier expansion of the form

ϕ−1, 1
2
(τ, z) = (ζ1/2 − ζ−1/2) + q(. . . ) + . . .

(iii) ϕ10,1(τ, z) = η18(τ)ϑ2(τ, z) ∈ Jcusp
10,1

Checking weight and index is trivial. Next thing to check is that the char-

acter and multiplier system are trivial. Note that ϑ2(τ, z) comes with trivial

character and multiplier system ν6
η and η(τ)18 comes with multiplier system

ν6
η . Since ν24

η = 1, ϕ10,1 has trivial character. To check the cusp condi-

tion, note that ϕ10,1(τ, z) = ∆(τ)ϕ−2,1. Since ∆(τ) is a cusp form, thus we

have ϕ10,1(τ, z) ∈ Jcusp
10,1 . By Theorem 5.32, we have dim Jcusp

10,1 ≤ 1. Thus

Jcusp
10,1 = Cϕ10,1. We will give an alternative proof of this fact.

(iv) ϕ8,2(τ, z) = η12(τ)ϑ4(τ, z) ∈ Jcusp
10,1 . Thus Jcusp

8,2 = Cϕ8,2 by Theorem 5.32.

(v) ϕ6,3(τ, z) = (η(τ)ϑ(τ, z))6 ∈ Jcusp
6,3 . Thus Jcusp

6,3 = Cϕ6,3 by Theorem 5.32.

(vi) ϕ4,4(τ, z) = ϑ8(τ, z) ∈ J4,4.
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Remark 5.43. In general we have the Fourier expansion of the above Jacobi forms

as

ϕk,1 =
∞∑
n=0

∑
r∈Z

r2≤4mn

Ck(4n− r2)qnζr, k = −2, 0, 10, 12. (5.10)

for some coefficients Ck(n). We have that ϕk,1 is a weak Jacobi form of weight k

for k = −2, 0 and Jacobi forms for k = 10, 12 of index 1. In particular,

ϕ0,1 =
ζ2 + 10ζ + 1

ζ
+ 2

(ζ − 1)2(5ζ2 − 22ζ + 5)

ζ2
q + . . .

Lemma 5.44. Jweak
−2,1 = Cϕ−2,1.

Proof. Let ψ−2,1 ∈ Jweak
−2,1 . Consider the Taylor expansion of ψ−2,1

ψ−2,1(τ, z) = f−2(τ) + f0(τ)z2 + . . .

In this case too, we have that f−2(τ) = ϕ−2,1(τ, 0) ∈ M−2 = {0}. Thus by

modifying Proposition 5.31 suitably to take care of the fact that ϕ−2,1 is a weak

Jacobi form, we get that f0(τ) ∈M0(SL2(Z)) = C. If f0(τ) = 0 then ordz=0ψ−2,1 ≥
4. Thus by Theorem 5.23, ψ−2,1 = 0. We know that ϕ−2,1 6= 0, thus the only zero

of ϕ−2,1 is at z = 0 of order 2. Now if f0(τ) 6= 0 then by Proposition 5.25,

ψ−2,1 = cϕ−2,1 for some c ∈ C. Thus we have that Jweak
−2,1 = Cϕ−2,1.

Lemma 5.45. Jcusp
10,1 = Cϕ10,1.

Proof. Let ψcusp
10,1 ∈ Jcusp

10,1 . Consider the Taylor expansion of ψ−2,1

ψcusp
−2,1(τ, z) = f cusp

10 (τ) + f cusp
12 (τ)z2 + . . .

In this case, we have that f cusp
10 (τ) = ϕ10,1(τ, 0) ∈ S10 = {0}. Thus f cusp

12 ∈ S10 =

C∆. Now if f cusp
12 = 0 then ψcusp

10,1 = 0 by exactly same argument as in Lemma 5.44.

Proceeding as in Lemma 5.44, we get Jcusp
10,1 = Cϕ10,1.

All the examples of Jacobi forms that we have constructed till now are of even

weight. We would now like to construct examples of Jacobi forms of odd weight.

The next proposition deals with this construction.
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Theorem 5.46. For t ∈ N, define ϑt(τ, z) := ϑ(τ, tz). Then we have the following:

(i) ϑt(τ, z) ∈ J 1
2
, t

2

2

with character νtH and multiplier system ν3
η .

(ii) ∀ ϕ ∈ Jk,m, ϕ(τ, tz) ∈ Jk,t2m.

Proof. Using Corollary 5.40, we have for M =

(
a b

c d

)

ϑt

(
aτ + b

cτ + d
,

z

cτ + d

)
= νη(M)3(cτ + d)1/2e

2πi t
2

2

(
cz2

cτ+d

)
ϑt(τ, z)

and for µ, λ ∈ Z

ϑt(τ, z + λτ + µ) = ϑ(τ, t(z + λτ + µ)) = (−1)tλ+tµe−πi(t
2λ2τ+2t2λz)ϑt(τ, z)

= νtHe
−πi(t2λ2τ+2t2λz)ϑt(τ, z).

Thus ϑt(τ, z) ∈ J 1
2
, t

2

2

with character νtH and multiplier system ν3
η . (ii) follows

similarly.

Example 5.47. ϕ11,2 = η(τ)21ϑ(τ, 2z) ∈ Jcusp
11,2 by Proposition 5.46.

5.8 Theta Series expansion

Let us first define a variant of the theta series defined in Section 5.7. For m ∈ N
and ` ∈ Z, define

ϑm,`(τ, z) :=
∑
r∈Z

r≡`(mod 2m)

qr
2/4mζr =

∑
n∈Z

q(`+2mn)2/4mζ`+2mn.

We will record a property of this theta series without proof.

Theorem 5.48. The theta series ϑm,` is a Jacobi form of index m and weight 1/2.

In particular we have that

ϑm,`(τ + 1, z) = e2πi`2/4mϑm,`(τ, z)

ϑm,`

(
−1

τ
,
z

τ

)
=

√
τ

2mi

mz2

τ

∑
r (mod 2m)

e−2πir`/2mϑm,r(τ, z)
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We can now prove the following Theorem.

Theorem 5.49. Let ϕ be a Jacobi form of index m and weight k. Then

ϕ(τ, z) =
∑

`∈Z/2mZ

h`(τ)ϑm,`(τ, z) (5.11)

where h` transforms like vector valued modular form of weight k−1/2 with respect

to SL2(Z).

Remark 5.50. When we say that h`(τ) is a vector valued modular form, we mean

that the vector ~h(τ) = (h`)` (mod 2m) transforms as follows:

~h(γτ) = (cτ + d)k−1/2U(γ)~h(τ), ∀ γ =

(
a b

c d

)
∈ SL2(Z).

where U(γ) is some 2m× 2m matrix.

Proof. Using Theorem 5.19, we have the Fourier expansion of ϕ as

ϕ(τ, z) =
∑
n∈Z

(4nm−r2)≥0

c(4nm− r2, r)qnζr.

We can rearrange the sum by breaking it mod 2m. We get

ϕ(τ, z) =
2m−1∑
`=0

∑
r∈Z

r≡`(mod 2m)

∑
n≥r2/4m

c(4nm− r2, r)qnζr.

Using Theorem 5.19 to write c(4nm− r2, r) = c`(4nm− r2), we get

ϕ(τ, z) =
∑

`(mod 2m)

∑
r∈Z

r≡`(mod 2m)

∑
n≥r2/4m

c`(4nm− r2)qnζr.
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Put N = (4nm− r2), we get

ϕ(τ, z) =
∑

`(mod 2m)

∑
r∈Z

r≡`(mod 2m)

∑
N≥0

c`(4nm− r2)q
N+r2

4m ζr.

Rearranging terms we get

ϕ(τ, z) =
∑

`(mod 2m)

∑
r∈Z

r≡`(mod 2m)

(∑
N≥0

c`(4nm− r2)q
N
4m

)
q
r2

4m ζr

=
∑

`(mod 2m)

∑
r∈Z

r≡`(mod 2m)

h`(τ)q
r2

4m ζr

=
∑

`(mod 2m)

h`(τ)
∑
r∈Z

r≡`(mod 2m)

q
r2

4m ζr

=
∑

`∈Z/2mZ

h`(τ)ϑm,`(τ, z).

where h`(τ) =
∑
N≥0

c`(4nm − r2)q
N
4m . Now using the transformation of ϕ for T =(

1 1

0 1

)
and S =

(
0 −1

1 0

)
and using Theorem 5.48, we get

h`(τ + 1) = e−2πi`2/4mh`(τ)

h`

(
−1

τ

)
=

τ k√
2mτ/i

∑
r (mod 2m)

e−2πir`/2mhr(τ).

We can absorb the extra factor 1/
√

2m/i in e−2πir`/2m to get the 2m× 2m matrix

U(M).

Remark 5.51. The series in Theorem 5.49 is called Theta series decomposition.

5.9 Siegel modular forms

We will now systematically study Siegel modular forms. Throughout this section,

we will assume the notation of section 5.3. Let us first define these modular forms.
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We will mainly follow [9] for this section.

5.9.1 Definition and Fourier expansion

Definition 5.52. Let k, n ∈ Z, n ≥ 1. A function f : Hn → C is called a Siegel

modular form of weight k and degree n with respect to Spn(Z) if

(i) f is holomorphic.

(ii) f ((AZ +B)(CZ +D)−1) = det(CZ +D)kf(Z) ∀

(
A B

C D

)
∈ Spn(Z),

Z ∈ Hn.

Note that there is no condition on the Fourier expansion of f . The Fourier expan-

sion here is automatic for n > 1 if f is assumed to be holomorphic. This is called

the Koecher principle. The proof of this Theorem can be found in [9].

Theorem 5.53. Let f be a Sigel modular form of weight k and degree n. Then f

has a Fourier expansion of the form

f(Z) =
∑
T≥0

af (T )e2πi trace(TZ) (5.12)

where the sum runs over all half-integral1, positive semi-definite matrices of size

n.

Remark 5.54. f is called a Siegel cusp form if in the Fourier expansion (5.12),

the sum runs only over positive definite matrices T .

5.9.2 Fourier Jacobi expansion

We are particularly interested in Siegel modular forms of degree 2. We have the

following Lemma.

1 Matrices whose non-diagonal entries are from Z
2 .
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Lemma 5.55. For n = 2, the Fourier expansion (5.12) takes a simple form

f(Ω) =
∑

n,r,m∈Z
n,m,4mn−r2≥0

af (n, r,m)qnζrwm

where q = e2πiτ , ζ = e2πiz and w = e2πiσ.

Proof. For Ω ∈ H2, we have Ω =

(
τ z

z σ

)
where τ, σ ∈ H and z ∈ C. Also any 2×2

half-integral matrix is of the form T =

(
n r/2

r/2 m

)
where n, r,m ∈ Z. For T to be

positive semi definite, we must have both eigenvalues positive which is equivalent to

having nm−r2/4 ≥ 0 and n,m ≥ 0. Moreover we have trace(TZ) = nτ+rz+mσ.

Thus using (5.12), we get

f(Ω) =
∑

n,r,m∈Z
n,m,4mn−r2≥0

af (n, r,m)e2πi(nτ+rz+mσ)

=
∑

n,r,m∈Z
n,m,4mn−r2≥0

af (n, r,m)qnζrwm.

where af (T ) = af (n, r,m).

We will now investigate the claimed connection between Jacobi forms and Siegel

modular forms.

Theorem 5.56. (Fourier-Jacobi expansion) Let f be a Siegel modular form of

weight k and degree 2. Then f has an expansion of the form

f(Ω) =
∞∑
m=0

ϕm(τ, z)wm

where each ϕm is a Jacobi form of weight k and index m.
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Proof. Using Lemma 5.55, we can rearrange terms and write

f(Ω) =
∞∑
m=0

 ∑
n,r∈Z

4mn−r2≥0

af (n, r,m)qnζr

wm

=
∞∑
m=0

ϕm(τ, z)wm.

where ϕm(τ, z) =
∑
n,r∈Z

4mn−r2≥0

af (n, r,m)qnζr. To show that ϕ is a Jacobi form, we

need to check transformation properties and the Fourier expansion. But Fourier

expansion is obvious from the definition of ϕm. We now check modularity and

elliptic invariance. For M =

(
a b

c d

)
∈ SL2(Z) we have f |k[M ] = f where we

used the notation of section 5.3. If we write f(Ω) = f(τ, z, σ), then this gives

f

(
aτ + b

cτ + d
,

z

cτ + d
, σ − cz2

cτ + d

)
= (cτ + d)kf(τ, z, σ).

Plugging in the Fourier-Jacobi expansion both sides gives

∞∑
m=0

(cτ + d)kϕm(τ, z)wm =
∞∑
m=0

ϕm

(
aτ + b

cτ + d
,

z

cτ + d

)
e−2πim cz2

cτ+dwm.

Comparing coefficients of wm on both sides we get the modularity:

ϕm

(
aτ + b

cτ + d
,

z

cτ + d

)
= (cτ + d)ke2πim cz2

cτ+dϕm(τ, z).

Similarly for λ, µ ∈ Z, using modularity for f with respect to

[(
µ

λ

)
, 0

]
, we get

elliptic invariance.

Remark 5.57. We can ask a converse question. Given a sequence of Jacobi

forms {ϕm}∞m=0, does the formal sum f(τ, z, σ) =
∞∑
m=0

ϕm(τ, z)e2πimσ define a Siegel

modular form? The answer to this question is positive but under some conditions

on the sequence of Jacobi forms. This has been investigated in a paper by Raum
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[20].

5.9.3 Igusa cusp form

We will discuss (without proof) an example of a Siegel cusp form which is of

interest in later chapters in our discussion. Define

Φ10 = qζw
∏

(m,r,n)>0

(1− qnζrwm)2C0(4mn−r2) (5.13)

where (m, r, n) > 0 means that m, r, n ∈ Z with m > 0, n ≥ 0 or m ≥ 0, n > 0 or

m = n = 0, r < 0. The exponents C0(4mn− r2) are the coefficients in the Fourier

expansion in (5.10). Φ10 is called the Igusa cusp form of weight 10 and degree 2.

Theorem 5.58. Φ10 is a Siegel cusp form of weight 10 and degree 2 with a zero

at z = 0. Moreover it has Fourier expansion of the form∑
n,r,m∈Z

4mn−r2>0

a10(n, r,m)qnζrwm,

where

a10(n, r,m) =
∑

d|gcd(n,r,m),d>0

dk−1C10

(
4mn− r2

d2

)
with C10(d) as in (5.10).

The function of interest to physics is the inverse of the Igusa cusp form. We will

analyse it in now. Put

Z(Ω) =
1

Φ10(Ω)
.

Z(Ω) has pole at z = 0. Thus it is a meromorphic Siegel modular form of weight

−10 and degree 2. We will now anlayse its Fourier expansion.

Theorem 5.59. The Fourier expansion of Z(Ω) is of the form

Z(Ω) =
∑

m,n≥−1
r∈Z

g(m, r, n)qnζrwm. (5.14)
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Proof. We will prove that Z(Ω) has simple poles at q, w = 0. First observe that

the product representation of Z(Ω) is

Z(Ω) = q−1ζ−1w−1
∏

(m,r,n)>0

(1− qnζrwm)−2C0(4mn−r2)

and note that the exponents of q and w is always non negative. Thus we have the

following limits.

lim
q→0

ql+1 1

Φ10

= lim
q→0

ql+1q−1ζ−1w−1
∏

(m,r,n)>0

(1− qnζrwm)−2C0(4mn−r2) = 0 ∀l > 0

and that

lim
q→0

q
1

Φ10

= lim
q→0

ζ−1w−1
∏

(m,r,n)>0

(1− qnζrwm)−2C0(4mn−r2) 6= 0

Similar limits hold for w as well. This shows that Z(Ω) has a simple pole at q = 0

and w = 0. Thus the Fourier expansion of Z(Ω) has the desired form.

Theorem 5.60. Z(Ω) has Fourier-Jacobi expansion of the form

Z(Ω) =
∑
m≥−1

ψm(τ, z)wm (5.15)

where ψm are meromorphic Jacobi forms of weight −10 and index m.

Proof. We can rearrange th series in (5.14) as follows:

Z(Ω) =
∑
m≥−1

∑
n≥−1
r∈Z

g(m, r, n)qnζr

wm.

Put ψm(τ, z) =
∑
n≥−1
r∈Z

g(m, r, n)qnζr. Then checking the transformation properties

of ψm is routine and follows exactly as done in Theorem 5.56. The Fourier expan-

sion of ψm corresponds to weakly holomorphic Jacobi forms by (5.4). But ψm has

a pole at z = 0. Thus each ψm is a meromorphic Jacobi form of weight −10 and



5. Jacobi Forms and Siegel modular forms 101

index m.



6. CLASS GROUPS

The subject of binary quadratic forms and class groups has its roots back to sev-

enteenth and eighteenth century. It was Gauss who first introduced the notion

of SL2(Z)-equivalence classes of binary quadratic forms and provided a composi-

tion law for this set of equivalence classes which made it into a group called class

group[24]. Dirichlet in 1938 studied the ideal classes of ring of integers of quadratic

number fields and gave an equivalent definition of class group. Dirichlet’s analysis

gave an easier way to compose pairs of binary quadratic forms. Finally Manjul

Bhargava in 2000 gave an easy way to look at these compositions and showed that

this composition law is one of atleast fourteen composition laws of this type[3].

The results contained in this chapter can be found in [10].

6.1 Definition

For m, r, n ∈ Z, we first define a binary quadratic form.

Definition 6.1. A binary quadratic form is a function q : Z × Z → Z given by

q(x, y) = mx2 + rxy + ny2 where m, r, n ∈ Z. The integer D = r2 − 4mn is called

the discriminant of q(x, y). The binary quadratic form q(x, y) is called

(i) primitive if gcd(m, r, n) = 1.

(ii) positive definite if D < 0 and m > 0.

(iii) reduced if |r| ≤ |m| ≤ |n| and r ≥ 0 when |m| = |r| or |m| = |n|.

For A =

(
a b

c d

)
∈ GL2(Z), the change of variables

q(x, y) 7→ Aq(x, y) = (ax+ by, cx+ dy)
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is called linear change of variables. If

(
a b

c d

)
∈ SL2(Z), then q(x, y) and q(ax+

cy, bx + dy) are said to be properly equivalent. Any quadratic form is equivalent

to a primitive form and it can be obtained by a series of linear change of variables

of the form T kq and Sq where T =

(
1 0

1 1

)
and T =

(
0 1

−1 0

)
.

Theorem 6.2. For any quadratic form, there is a sequence of linear change of

variables, each of type T k or S such that the transformed quadratic form is reduced.

The proof of this Theorem gives a recipe to reduce any quadratic form. We will

describe the algorithm now.

Corollary 6.3. (Definite reduction algorithm)

1. Given coefficients a, b, c ∈ Z, put q(x, y) = ax2 + bxy + cy2.

2. By division algorithm, obtain k, r ∈ Z with b = k(2a) + r and |r| ≤ |a|. The

change of variables q 7→ T kq results in a quadratic form with |b| ≤ |a|.

3. If |a| ≤ |c|, go to Step 5.

4. Put q = Sq to produce a quadratic form with |a| < |c| and go back to Step

2.

5. If b = −|a|, put q := T sgn(a)q to replace ax2− |a|xy+ cy2 with ax2 + (−|a|+
2|a|)xy + cy2 = ax2 + |a|xy + cy2 where sgn(a) = a

|a| .

6. If b < 0 and a = |c|, put q := Sq to replace ax2 +bxycy2 with cx2−bxy+ay2.

Observe that given any quadratic form q(x, y) = mx2 +rxy+ny2, we can associate

a symmetric matrix to it in the following fashion

q(x, y) = mx2 + rxy + ny2 7→

(
m r/2

r/2 n

)

and the quadratic form itself can be written as

q(x, y) =

(
x

y

)t(
m r/2

r/2 n

)(
x

y

)
.
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We will denote the matrix associated to q(x, y) by Qq. Consider the set of all

primitive, positive definite binary quadratic forms with fixed discriminant D and

denote it by QD. The next Theorem gives an action of SL2(Z) on QD.

Theorem 6.4. For M =

(
a b

c d

)
∈ SL2(Z) and q(x, y) ∈ QD, the map SL2(Z)×

QD −→ QD given by

(M, q) 7→ (M ◦ q)(x, y) = q(ax+ cy, bx+ dy) =

(
x

y

)t

MQqM
t

(
x

y

)
.

is a group action of SL2(Z) on the set QD.

The above action can be viewed as an action on the matrix Qq given by (M ◦Qq) =

MQqM
t. Denote the set of orbits under this action by QD/SL2(Z).

Definition 6.5. The set C(D) = QD/SL2(Z) is called the class group and the

cardinality |C(D)| is called the class number.

Theorem 6.6. The cardinality |C(D)| of the class group is finite.

Notation. Given a quadratic form q(x, y) = mx2 + rxy + ny2, we will denote by

[m, r, n] the class in C(D) represented by q.

6.2 Group structure

C(D) admits a group structure with respect to some composition which was first

introduced by Gauss (1801). Let us first recall the following identity attributed to

7th century Indian mathematician Brahmagupta.

Proposition 6.7. For any integers x1, y1, x2, y2, D, we have

(x2
1 +Dy2

1)(x2
2 +Dy2

2) = (x1x2 −Dy2y2)2 +D(x1y2 +Dx2y1)2.

We can summarize the previous identity by saying that the numbers of the form

x2+Dy2 are closed under multiplication. In 1801, Gauss asked in his Disquisitiones

Arithmeticae whether it was possible to generalize this to numbers of a more

general form, namely ax2 + bxy + cy2 . He comes up with the answer: Yes!
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Theorem 6.8. Let a1x
2
1+b1x1y1+c1y

2
1 and a2x

2
2+b2x

2y2+c2y
2
2 be binary quadratic

forms of discriminant D. Then, there exists an (explicit) transformation (change

of variables):

(
X

Y

)
=

(
p0 p1 p2 p3

q0 q1 q2 q3

)
x1 x2

x1 y1

y1 x2

y1 y2


and integers A,B,C such that (a1x

2
1 + b1x1y1 + c1y

2
1)(a2x

2
2 + b2x

2y2 + c2y
2
2) =

AX2 +BXY + CY 2. Moreover B2 − 4AC = D.

Theorem 6.9. The set C(D) forms a finite abelian group.

It is worth noting that the modern notion of a group did not exist when Gauss

wrote his Disquisitiones. However, it is clear that, without using our modern terms,

this is really what he was after. The issue with Gauss composition is that it is

highly non-trivial to compute the composition of two classes. This task was taken

up by one of Gauss’s students: Peter Gustav Jejune Dirichlet. Dirichlet went on

to investigate the ideals of the ring of integers of quadratic number fields Q(
√
D)

and came up with an equivalent formulation of class groups with this perspective

and also showed that the two class groups are isomorphic. We will not go into

details of this formulation but simply state the results[23].

Theorem 6.10. (Dirichlet’s united form) Let [m1, r, n1] and [m2, r, n2] be two

members of class group C(D) such that gcd(m1,m2) = 1 (Two such quadratic

forms are called united). Put n = gcd(n1, n2). The class group composition of the

two classes is given by

[m1, r, n1] ∗ [m2, r, n2] = [m1m2, r, n] (6.1)

Theorem 6.11. Let [m1, r1, n1] and [m2, r2, n2] be two members of class group

C(D). Let e = gcd
(
n1, n2,

r1+r2
2

)
. Then there is a unique integer R modulo

2n2n2/e
2 such that:

R ≡ r1 mod
2n1

e
, R ≡ r2 mod

2n2

e
, R2 ≡ D mod

4n1n2

e2
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Moreover, we have the following class group composition

[m1, r1, n1] ∗ [m2, r2, n2] =

[
e2(R2 −D)

4n1n2

, R,
n1n2

e2

]
. (6.2)

The proof of this Theorem gives us the recipe to calculate R. We will not go into

the proof but we will simply give the formula for R.

Corollary 6.12. With the assumptions and notation of Theorem (4.12), we have

that

R =
1

e

(
αn1r2 + βn2r1 + γ

r1r2 +D

2

)
(6.3)

where α, β and γ are such that αn1 + βn2 + γ r1+r2
2

= e.

Corollary 6.13. Let
[
1, r1+i

√
−D

2n1

]
and

[
1, r2+i

√
−D

2n2

]
be two vectors associated to

class group elements [m1, r1, n1] and [m2, r2, n2] with discriminant D < 0. Then

with the notations of Theorem (4.12), we have the following composition[
1,
r1 + i

√
−D

2n1

]
∗
[
1,
r2 + i

√
−D

2n2

]
=

[
1,
e2(R + i

√
−D)

4n1n2

]
(6.4)

R =
1

e

(
αn1r2 + βn2r1 + γ

r1r2 +D

2

)
(6.5)

where α, β and γ are such that αn1 + βn2 + γ r1+r2
2

= e.

Theorem 6.14. Given a class [m, r, n], its inverse class is given by

[m, r, n]−1 = [m,−r, n] = [n, r,m].

Theorem 6.15. The identity class 1D in C(D) is given by

1D =


[
1, 0,−D

4

]
if D ≡ 0(mod 4)[

1, 1, 1−D
4

]
if D ≡ 1(mod 4).
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6.3 Bhargava’s composition

In 2000, Manjul Bhargava came up with an elegant and beautiful perspective on

these class group composition using 2× 2× 2 cubes.

Definition 6.16. (Bhargava Cube): A Bhargava cube Cabcdefgh is a 2×2×2 array

of elements in Z:

c d

g
h

a
b

e f

Given a Bhargava Cube, we can construct three pairs of 2× 2 matrices and corre-

sponding to each pair we can construct a quadratic form. We index the three pairs

by F,L and T and the two matrices in each pair by Mi and Ni for i ∈ {F,L, T}
The matrices are listed below:

• i = F MF =

[
a b

c d

]
NF =

[
e f

g h

]

• i = L ML =

[
a c

e g

]
NL =

[
b d

f h

]

• i = T MT =

[
a e

b f

]
NT =

[
c g

d h

]
The recipe to construct a quadratic form from these pairs is the following:

For i ∈ {F,L, T}, put

qi(x, y) = −det(xMi − yNi).
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Definition 6.17. A Bhargava cube is called primitive if all its associated quadratic

forms are primitive.

We have the following Theorems due to Bhargava:

Theorem 6.18. (Bhargava) The three forms associated with any primitive Bhar-

gava cube C of discriminant D satisfy [qF ][qL][qT ] = 1D.

Proposition 6.19. Let q1 and q2 be two quadratic forms of the same discriminant.

There exists a Bhargava cube for which qF = q1 and qL = q2.

Thus, given two classes [q1] and [q2] , we have got a recipe to compute the com-

position of these classes using the Theorem above. We first need to construct a

Bhargava cube for which qF = q1 and qL = q2. The existence of such a cube is guar-

anteed by the proposition above. Now by Theorem above we have [q1][q2][qT ] = 1.

Thus the composition [q1][q2] = [qT ]−1. Thus the problem of class composition

reduces to constructing a suitable Bhargava cube. In fact the proof of Proposition

6.19 gives us a way to construct such a cube. The steps to do so are outlined below.

Let qi(x, y) = aix
2 + bix + ci ; i = 1, 2 be two quadratic forms. The cube which

we get from Proposition 6.19 is of the form shown below.

0 −a′1

−a′2
h

a
b

e f

We calculate various vertices in the following way:

a = gcd(a1, a2, (b1 + b2)/2) a′i = ai/a ; i = 1, 2 h = (b1 + b2)/2a
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To calculate e, f, g define the following other quantities. di = gcd(a′i, h) ; a′′i =

a′i/di ; hi = h/di ; c′1 = c1/d2 ; c′2 = c2/d1. In terms of these quantities consider

the congruences

f ≡ −a′′2c′1 (mod h2) f ≡ −a′′1c′2 (mod h1)

Solving this congruence (solution exists according to the construction), we find f

and then if h 6= 0 then e = −(c1 + a′2f)/h and b = −(c2 + a′1f)/h. If h = 0 then

f = −c1/a
′
2 = −c2/a

′
1 and for e and b we take any solution of −a′1e + a′2b = b1

(again solution exists by construction).

Example 6.20. Now let us apply the above theory to compute some of the com-

positions. Consider D = −47. It is known that the class number h(D) = 5 and

the SL2(Z)-equivalence classes are [1,1,12], [2,±1,6] and [3,±1,4]. We would like

to compose two classes from this list and get another class in this list.

• [2, 1, 6] ∗ [3, 1, 4]

Using above procedure we get the values of the vertices of Bhargava cube.

It is shown below.

0 −2

−3
1

1
−4

−6 0

The associated forms are qF (x, y) = 2x2 + xy + 6y2 = q1(x, y) qL(x, y) =

3x2 +xy+4y2 = q2(x, y) and finally qT (x, y) = 24x2−23xy+6y2. We reduce

qT using the definite reduction algorithm in Corollary 6.3 to get 2x2+xy+6y2.

Thus we have [2, 1, 6] ∗ [3, 1, 4] = [2, 1, 6]−1 = [2,−1, 6]
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• [2, 1, 6] ∗ [2, 1, 6]

Using above procedure we get the values of the vertices of Bhargava cube.

It is shown below.

0 −2

−2
1

1
−6

−6 0

The associated forms are qF (x, y) = 2x2 + xy + 6y2 = q1(x, y) qL(x, y) =

2x2 +xy+ 6y2 = q2(x, y) and finally qT (x, y) = 36x2− 23xy+ 4y2. Reducing

we get 3x2 +xy+4y2. Thus we have [2, 1, 6]∗ [2, 1, 6] = [3, 1, 4]−1 = [3,−1, 4]

• [3, 1, 4] ∗ [3, 1, 4]

Using above procedure we get the values of the vertices of Bhargava cube.

It is shown below.

0 −3

−3
1

1
−4

−4 0
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The associated forms are qF (x, y) = 3x2+xy+4y2 = q1(x, y) qL(x, y) = 3x2+

xy+4y2 = q2(x, y) and finally qT (x, y) = 16x2−23xy+9y2. Again reducing,

we get 2x2−xy+6y2. Thus we have [3, 1, 4]∗ [3, 1, 4] = [2,−1, 6]−1 = [2, 1, 6]

• [2, 1, 6] ∗ [3,−1, 4]

Using above procedure we get the values of the vertices of Bhargava cube.

It is shown below.

0 −2

−3
0

1
1

1 −2

The associated forms are qF (x, y) = 2x2+xy+6y2 = q1(x, y) qL(x, y) = 3x2−
xy+4y2 = q2(x, y) and finally qT (x, y) = 3x2+5xy+6y2. Legendre reduction

gives 3x2−xy+4y2. Thus we have [2, 1, 6]∗ [3,−1, 4] = [3,−1, 4]−1 = [3, 1, 4]

• [2,−1, 6] ∗ [3, 1, 4]

Using above procedure we get the values of the vertices of Bhargava cube.

It is shown below.
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0 −2

−3
0

1
−1

−1 −2

The associated forms are qF (x, y) = 2x2 − xy + 6y2 = q1(x, y) qL(x, y) =

3x2 + xy + 4y2 = q2(x, y) and finally qT (x, y) = 3x2 − 5xy + 6y2. Reduction

gives 3x2 +xy+4y2. Thus we have [2,−1, 6]∗ [3, 1, 4] = [3, 1, 4]−1 = [3,−1, 4].

Thus we have the following list of compositions:

[2, 1, 6] ∗ [3, 1, 4] = [2,−1, 6]

[2, 1, 6] ∗ [2, 1, 6] = [3,−1, 4]

[3, 1, 4] ∗ [3, 1, 4] = [2, 1, 6]

[2, 1, 6] ∗ [3,−1, 4] = [3, 1, 4]

[2,−1, 6] ∗ [3, 1, 4] = [3,−1, 4]



7. BLACK HOLES AND CLASS

GROUPS

7.1 Introduction

We will first state the connection between black holes and class group concretely

in the form of a Theorem due to G.W. Moore. The specific black hole solutions

which admit such a correspondence are those appearing in type IIB string theory

compactified on K3 × T 2. These are the set of supersymmetric BPS black holes.

Given a black holes solution we can associate two physical quantities P and Q

called magnetic and electric charge vector respectively. These charge vectors are

elements of Z28 and have integer coefficients. Given a black hole solution, we can

define a transformation on this solution to get another solution. This is called

U -duality transformation. To characterise this transformation, consider a black

hole solution with charge vectors P and Q and consider the following matrix

QQ,P =

(
P 2 P ·Q
P ·Q Q2

)
= 2

(
n r/2

r/2 m

)

where m, r, n ∈ Z, (Q2, P 2, Q · P ) is the combinations (QTLQ,P TLP,QTLP )

where L is the SO(6, 22) invariant metric for the dot product. Then U -duality

transformation is exactly the SL2(Z)−action on the quadratic form determined

by QQ,P . Through out this chapter, by fundamental discriminant we will mean

that D ≡ 0, 1(mod 4) and that D is square-free when D ≡ 1(mod 4) and D/4

is a square-free number congruent to 2 or 3 modulo 4 when D ≡ 0(mod 4). We

can now state the Theorem.

Theorem 7.1 (Moore [14, 13]). If D < 0 is a fundamental discriminant, then the
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U-duality equivalence classes of attractor black holes of entropy S = π
√
−D admit

a structure as a finite abelian group. Moreover, this group is isomorphic to the

class group C(D).

Following questions arise naturally in this context.

Questions 7.2. (i) Is there a natural physical interpretation of the group law

described in Theorem 4.1 in terms of attractor black holes?

(ii) Is there a distinguished physical property of the identity class black hole,

which corresponds to the class represented by the identity element 1D?

(iii) Is there a physical interpretation of inverse black hole?

(iv) What is the physical interpretation of the order of a black hole corresponding

to the order of an element in the class group?

There are other questions that one might ask. It is known, for example, that there

are finitely many values of fundamental discriminant D for which the class group

is trivial. This was originally conjectured by Gauss in 1801[24]. On the black hole

side, this means that there are finitely many values of entropy for which there is a

unique U−duality class. What is the physical interpretation of this fact? We will

try to answer the third question using the notion of degeneracy.

Definition 7.3. Let P and Q be charge vectors. The number of underlying mi-

crostates d(Q,P ) with charge vectors P and Q is called degeneracy.

7.2 Degeneracy of black hole class

Degeneracy of black hole microstate is related to something called partition func-

tion. Knowing the partition function for a given solution in string theory, one can

obtain the degeneracy for a particular configuration.

Theorem 7.4. [17] The partition function associated with 1
4
BPS black hole solu-

tion of type IIB string theory compactified on K3× T 2 is given by

Z(Ω) =
1

Φ10(Ω)
(7.1)
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where Ω =

(
τ z

z σ

)
; τ, σ ∈ H; z ∈ C and

Φ10(Ω) = qζw
∏

(m,r,n)>0

(1− qnζrwm)2C0(4mn−r2)

is the Igusa cusp form as given in (5.13).

The partition function is a meromorphic Siegel modular form of weight −10 and

degree 2 with double poles at z = 0. We now state the relation between degeneracy

and partition function. There are two perspective for this relation. In the first case,

we express the degeneracy using an integral called the Fourier integral involving the

partition function and in the second perspective, we observe that the degeneracy is

related to the Fourier coefficients in the Fourier expansion of the partition function.

We will discuss both perspective and observe their relation.

Theorem 7.5. [18] Let P and Q be charge vectors. Then the degeneracy d(Q,P )

is given by

d(Q,P ) = (−1)Q·P+1

∫
C

dτdσdz e−πi(σQ
2+2zQ·P+τP 2), (7.2)

where C is a three real dimensional subspace of the three complex dimensional space

labelled by

(σ, τ, z) ≡ (σ1 + iσ2, τ1 + iτ2, z1 + iz2),

σ2 = M1, τ2 = M2, z2 = M3 and 0 ≤ τ1, σ1, z1 ≤ 1,
(7.3)

where

M1 = Λ

(
|λ|2

λ2

+
Q2
R√

Q2
RP

2
R − (QR · PR)2

)

M2 = Λ

(
1

λ2

+
P 2
R√

Q2
RP

2
R − (QR · PR)2

)

M3 = −Λ

(
λ1

λ2

+
QR · PR√

Q2
RP

2
R − (QR · PR)2

)
,

(7.4)
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where Λ is a large positive number and

Q2
R = QT (M + L)Q,P 2

R = P T (M + L)P,QR · PR = QT (M + L)P,

λ = λ1 + iλ2 denotes the asymptotic value of the axion-dilaton moduli which belong

to the gravity multiplet and M is the asymptotic value of the 28 × 28 symmetric

matrix valued moduli field of the matter multiplet satisfying MLMT = L.

We can now invert the Fourier integral (7.2) to define the degeneracy in the second

perspective.

Theorem 7.6. [12] Let P and Q be charge vectors. Then the degeneracy d(Q,P )

is given by

d(Q,P ) = (−1)Q·P+1g

(
Q2

2
, Q · P, P

2

2

)
(7.5)

where g(m, r, n) are the coefficients of Fourier expansion of Z(Ω),

Z(Ω) =
∑
m,r,n

g(m, r, n)e2πi(mσ+rz+nτ). (7.6)

The relation between the two perspective is the following. Different choices of

(M1,M2,M3) in (7.4) mean that we expand Z(Ω) in different ways to get different

values of g(m, r, n) in the expansion (7.6). Conversely, if we define d(Q,P ) in a

given domain of the asymptotic moduli space by (7.5), then the then the choice

of (M1,M2,M3) is determined by requiring that the series (7.6) be convergent for

(σ2, τ2, z2) = (M1,M2,M3).

To analyse the posed question, we first need to extract the attractor black holes

degeneracy. To do this, we need to choose the following special values of the

parameters,

Q2
R = 2Q2, P 2

R = 2P 2, λ2 =

√
Q2P 2 − (Q · P )2

P 2
, λ1 =

Q · P
P 2
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Substituting this in Eq. (7.4) gives,

M1 = 2Λ
Q2√

Q2P 2 − (Q · P )2
,M2 = 2Λ

P 2√
Q2P 2 − (Q · P )2

,

M3 = −2Λ
Q · P√

Q2P 2 − (Q · P )2

(7.7)

Thus, given T−duality invariants (Q2/2, Q · P, P 2/2) ≡ (m, r, n), the attractor

black holes degeneracy is given by d(Q,P ) = (−1)r+1g(m, r, n) if the series in (7.6)

converges for (σ2, τ2, z2) = (M1,M2,M3) where (M1,M2,M3) is given by (7.4). We

will follow the following strategy. We will first assign degeneracy to each U−duality

class. Then we will try to relate the degeneracy of different classes. This in turn

will give us some insight into the interpretation of different classes. But now there

is one issue that we need to fix. We need to prove that degeneracy does not vary

in a given U−duality class if we are to assign degeneracies to U−duality classes.

We will first prove this and then finally prove that degeneracy of a black hole class

and its inverse class is the same.

Let P,Q be charge vectors. The U−duality class represented by this charge vector

will be denoted by [m, r, n] where Q2/2 = m,P 2/2 = n and P · Q = r. To show

that degeneracy does not vary in a given U−duality class, we need to show that if

QQ′,P ′ = MQQ,PM
t for some M ∈ SL2(Z), then d(Q,P ) = d(Q′, P ′). We also need

to make sure that the the series (7.6) for the transformed partition function induced

by the embedding of SL2(Z) into Sp2(Z) converges for (τ̃2, σ̃2, z̃2) = (M ′
1,M

′
2,M

′
3).

To be precise, let

Ω′ = MΩM t for M ∈ SL2(Z)

and (M ′
1,M

′
2,M

′
3) be as in (7.4) for transformed charge vectors Q′, P ′. Then, we

need to show that the series (7.6) for Z(Ω′) converges for (σ′2, τ
′
2, z
′
2) = (M ′

1,M
′
2,M

′
3).

Let us first prove the first part.

Theorem 7.7. If QQ′,P ′ = MQQ,PM
t for some M ∈ SL2(Z), then d(Q,P ) =

d(Q′, P ′).

Proof. First observe that (−1)P ·Q = (−1)P
′·Q′ . To see this let M =

(
a b

c d

)
. Then

if
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QQ,P =

(
P 2 P ·Q
P ·Q Q2

)
=

(
2n r

r 2m

)
then

QQ′,P ′ =

(
P ′2 P ′ ·Q′

P ′ ·Q′ Q′2

)
=(

∗ 2can+ r(ad+ bc) + 2mbd

2can+ r(ad+ bc) + 2mbd ∗

)
.

But ad− bc = 1, so Q′ ·P ′ = 2(can+mbd+ rbc) + r = 2(can+mbd+ rbc) +P ·Q.

Thus (−1)P ·Q = (−1)P
′·Q′ . We now need to show that

g
(
Q2

2
, Q · P, P 2

2

)
= g

(
Q′2

2
, Q′ · P ′, P ′2

2

)
.

It suffices to prove this for M = S, T where S =

(
0 −1

1 0

)
and T =

(
1 1

0 1

)
since

S, T generate SL2(Z). We first consider T . From Eq. (5.14) and Eq. (5.15)

ψm(τ, z) =
∑
n≥−1
r∈Z

g(m, r, n)qnζr.

Now observe that for

QQ,P = 2

(
n r/2

r/2 m

)
, QQ′,P ′ = TQQ,PT

t = 2

(
n+m+ r r/2 +m

r/2 +m m

)
.

The corresponding degeneracies involve g(m, r, n) and g(m, r + 2m,n + m + r)

which are same as a result of remark 5.20 for k = 1. We now consider S. Next,

observe that

SQQ,PS
t =

(
m −r/2
−r/2 n

)
.

Thus we need to show that g(m, r, n) = g(n,−r,m). Now since Z(Ω) is a Siegel

modular form and S ∈ GL2(Z), thus

(
U 0

0 (U t)−1

)
∈ Sp2(Z). Hence

Z(SΩSt) = Z(Ω)

Moreover for
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Ω =

(
τ z

z σ

)
, SΩSt =

(
σ −z
−z τ

)
.

We now insert the expansion from Eq. (7.6) on both sides to get∑
m,n≥−1
r∈Z

g(m, r, n)qmζ−rwn =
∑

m,n≥−1
r∈Z

g(m, r, n)qnζrwm.

Renaming the variables n↔ m, r 7→ −r, we see that the sum ranges over the same

terms and hence we get∑
m,n≥−1
r∈Z

g(n,−r,m)qnζrwm =
∑

m,n≥−1
r∈Z

g(m, r, n)qnζrwm.

which finally gives g(m, r, n) = g(n,−r,m).

We now show that Z(Ω′) indeed converges for (σ′2, τ
′
2, z
′
2) = (M ′

1,M
′
2,M

′
3). But

observe that the domain also transforms under U−duality transformation exactly

in the same way. That is, Ω′ and QQ′,P ′ are related to Ω and QQ,P respectively in

exactly the same way under U−duality transformation. Hence the series converges

in the new domain as well.

Now, to prove that the degeneracy of a U−duality class and its inverse class is the

same, we need to show that

(−1)Q·P+1g
(
Q2

2
, Q · P, P 2

2

)
= (−1)−Q·P+1g

(
Q2

2
,−Q · P, P 2

2

)
.

since [m, r, n]−1 = [m,−r, n] = [n, r,m]. We further need to justify the conver-

gence of the series for the transformed domain. First observe that (−1)Q·P+1 =

(−1)−Q·P+1. Secondly, we justify the convergence. Observe that under the class

group action on the (σ, τ, z) domain we have, (σ′, τ ′, z′) = (σ, τ,−z) as explained

in the proof of the next Theorem. At the same time, it is easily seen that

(M ′
1,M

′
2,M

′
3) = (M1,M2,−M3). We conclude that under these transformations,

the series remains invariant and hence converges. We conclude the proof by proving

the next Theorem.

Theorem 7.8. We have g(m, r, n) = g(m,−r, n) where g is the coefficients in the

Fourier expansion in Eq. (7.6).
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Proof. Let U =

(
1 0

0 −1

)
∈ GL2(Z). Then

Z(UΩU t) = (−1)−10Z(Ω) = Z(Ω).

Also note that

UΩU t =

(
τ −z
−z σ

)
.

Plugging the Fourier expansion of Eq. 7.6, we get∑
m,n≥−1
r∈Z

g(m, r, n)qnζ−rwm =
∑

m,n≥−1
r∈Z

g(m, r, n)qnζrwm.

Again renaming the indices r 7→ −r, we get∑
m,n≥−1
r∈Z

g(m,−r, n)qnζrwm =
∑

m,n≥−1
r∈Z

c(m, r, n)qnζrwm

which gives g(m, r, n) = g(m,−r, n).

7.3 Entropy of a black hole class

Now that we have one connection between a U−duality class and its inverse class,

we may now try to connect other U−duality classes using degeneracy. The integral

or series representation does not help much because of the complicated nature of

class group operation. Hence, we now probe the asymptotic entropy of attractor

black holes upto linear correction in charges which is calculated using the Entropy

function approach[12]. We first discuss the result and then try to understand the

class group operations.

Define

τ2 =

√
Q2P 2 − (Q · P )2

P 2
, τ1 =

Q · P
P 2

and τ = τ1 + iτ2 (7.8)
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The entropy function analysis for these black holes gives the statistical entropy of

black holes with charge vectors Q,P to be

Sstat ' −ΓB(τ) at
∂ΓB(τ)

∂τ
= 0 (7.9)

where

− ΓB(τ) =
π

2τ2

|Q− τP |2 − ln g(τ)− ln g(−τ)− (k + 2) ln 2τ2 + ln 4πK +O(Q−2)

(7.10)

where g(τ) = η(τ)24 and K is a constant and k = 10 for our case. Now since,

Sstat = ln d(Q,P ), we can study the relation between degeneracies using the sta-

tistical entropy. Since τ depends on the charges, thus the class group composition

also acts on τ . Thus we first want to relate τ ′s corresponding to different U−duality

classes. As a first example, consider the Dirichlet composition of united forms of

Theorem 6.10. Suppose, τ, τ ′ and τ̂ are the quantities defined in (7.8) correspond-

ing to the classes [m1, r, n1], [m2, r, n2] and [m1m2, r, n] respectively satisfying the

hypothesis of Theorem 6.10 (and hence the relation (6.1)), then it can easily be

seen that

τ̂ = k1τ = k2τ
′ where k1 = n1/n and k2 = n2/n

Here as usual we have for the class [m, r, n], Q2/2 = m,P 2/2 = n and Q · P = r.

Thus at least for this special case, the problem of relating degeneracies reduces to

relating the quantities g(τ) and g(kτ) for some constant integer k. Furthermore,

if we impose the condition that n1|n2 (or n2|n1), then n = n1 (or n = n2) which

implies k1 = 1 (or k2 = 1). Thus we get g(τ̂) = g(τ) (or g(τ̂) = g(τ ′)) which in

turn means d(Q̂, P̂ ) = d(Q,P ) (or d(Q̂, P̂ ) = d(Q′, P ′)) using relation (7.10). For

general elements of the class group, we need to use general Dirichlet composition

as stated in the Theorem 6.11. Now observe that with the notations introduced

in (7.8), the composition in (6.4) is exactly

[1, τ ] ∗ [1, τ ′] = [1, τ̂ ]
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The next step is to find τ̂ in terms of τ and τ ′. The relation is obvious from (6.5)

and the result is

τ̂ = ατ ′ + βτ + γττ ′ (7.11)

Now we would like to relate g(τ̂), g(τ ′) and g(τ). The first question we should

ask is whether such a relation is possible. To answer this question, first consider

the simplest possible composition of classes as in Theorem (6.10). In this case, we

need to relate g(τ) and g(kτ) for some k ∈ Z. We first prove a technical Lemma

which shows that we can take k to be a positive integer.

Lemma 7.9. If [mi, ri, ni], i = 1, 2 are two united forms with discriminant D < 0

then we can assume ni to be positive for i = 1, 2.

Proof. First observe that [m, r, n]=[n,−r,m] as the representatives are related by

the matrix S. Moreover mi > 0 for each i since these quadratic forms are positive

definite and D < 0. Now suppose any one or both of ni is negative. We will follow

the following steps to find representatives of these two united forms with positive

coefficients of y2 which are still united :

1. Apply S to both classes to get new representatives [ni,−ri,mi], i = 1, 2.

2. Apply T ki on [ni,−ri,mi] to get representatives [ni − kir + mik
2
i ,−ri +

2kimi,mi], i = 1, 2. We will determine ki later.

3. Apply S on the two classes to get representatives [mi, ri − 2kimi, ni − kir +

mik
2
i ], i = 1, 2.

Now, to get ki, we will use the fact that [mi, ri − 2kimi, ni − kir+mik
2
i ], i = 1, 2

are united forms and ni − kir + mik
2
i > 0 for each i. The first constraint is

r1 − 2k1m1 = r2 − 2k2m2. This is satisfied if we choose k1 = cm2, k2 = cm1 for

any c ∈ Z. Now we can choose c large enough such that ni− kir+mik
2
i > 0. This

completes the proof.

The proof of Theorem 3.40 shows that f(rz) ∈ Mk(Γ1(rN)) \ Mk(Γ1(N)). We

apply this Theorem to g(kτ) for positive k. We get that g(kτ) ∈ S12(Γ1(k))

since g(τ) ∈ S12(Γ1(1)) and Γ1(1) = SL2(Z). Moreover since Γ1(k) ⊂ Γ1(1),
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thus S12(Γ1(1)) ⊂ S12(Γ1(k). Thus S12(Γ1(1) is a one dimensional subspace of

S12(Γ1(k) and g(kτ) ∈ S12(Γ1(k)) \ S12(Γ1(1)). Thus g(kτ) and g(τ) are linearly

independent. Now observe that if g(kτ) = F (g(τ)), then F must be linear in

g(τ) since higher powers will increase weight of F (g(τ) and other type of functions

(exponential, logarithm and so on) will destroy modularity. Now suppose g(kτ) =

F1(τ)g(τ) + F2(τ) assuming that F2 does not contain g(τ) and g(kτ), then F1

must be modular with weight 0 but only weight zero modular forms are constants.

So F1 = c ∈ C. Moreover, F2(τ) = g(kτ) − cg(τ) implies that F2 ∈ S12(Γ1(k)).

Suppose dim(S12(Γ1(k))) = n. Then there exists a basis {f1, f2, ..., fn−1, fn} such

that f1 = g(τ) and f2 = g(kτ). Then we have

F2(τ) =
n∑
i=3

cifi(τ)

This relation gives

−cf1(τ)− f2(τ) +
n∑
i=3

cifi(τ) = 0

This contradicts the fact that {f1, f2, ..., fn−1, fn} is a basis. Thus there cannot be

any relation between g(τ) and g(kτ). Now, Lemma (7.9) says that we may always

assume k to be positive so that the discussion above says that there cannot be any

relation between the degeneracies corresponding to united forms classes of black

holes. There can be one other way in which we can relate the degeneracies. We

can study the quantity g(τ)g(−τ)(2τ2)12 since

ln (d(Q,P )) = Sstat = −ΓB(τ) =
π

2τ2

|Q− τP |2 − ln [g(τ)g(−τ)(2τ2)12]

+ ln 4πK +O(Q−2)

We will again show that such a relation does not exist in this case. Theorem 3.32

implies that g(τ)g(−τ)(2τ2)12 is a modular function. Thus by Theorem 3.33, we

have that

g(τ)g(−τ)(2τ2)12 =
F1(τ)

F2(τ)

where F1 and F2 are modular forms with respect to SL2(Z) of the same weight.
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Also observe that if

g(τ)g(−τ)(2τ2)12 = G(g(kτ)g(−kτ)(2kτ2)12)

for some function G then

F1(τ) = G(g(kτ)g(−kτ)(2kτ2)12)F2(τ) (7.12)

But since g(kτ)g(−kτ)(2kτ2)12 is a modular function for Γ1(k), so is

G(g(kτ)g(−kτ)(2kτ2)12) since G must be sufficiently “nice” as g(τ)g(−τ)(2τ2)12 is

holomorphic on H. But now observe that (7.12) cannot hold since L.H.S satisfies

modularity with respect to SL2(Z) but R.H.S does not satisfy modularity with

respect to the full modular group. This is because

G(g(kτ)g(−kτ)(2kτ2)12) is a modular function for Γ1(k) and Γ1(k) 6= SL2(Z)

unless k = 1.

7.4 Identity black hole

Let us look at the identity black hole class. By theorem 6.15, the identity class in

the class group is given by

1D =


[
1, 0,−D

4

]
if D ≡ 0(mod 4)[

1, 1, 1−D
4

]
if D ≡ 1(mod 4).

By (7.4), the corresponding attractor point in the moduli space is

τ =

 2i√
−D if D ≡ 0(mod 4)

4i
i+
√
−D if D ≡ 1(mod 4).
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Thus, observe that for a fixed D, the entropy upto linear correction remains con-

stant in the identity class. Explicitly, the entropy upto linear correction is

Sid = π
√
−D −

ln
(∣∣g ( 2i√

−D

) ∣∣2 412

D6

)
if D ≡ 0(mod 4)

ln
(∣∣g ( 4i

i+
√
−D

) ∣∣2 (16D)6

(1−D)12

)
if D ≡ 1(mod 4)

This physical property may be used to define the identity class. Let us make this

definition.

Definition 7.10. Let D < 0 be a fundamental discriminant. Consider the class

group of U−duality equivalence classes of attractor black holes with leading en-

tropy S = π
√
−D. The equivalence class with entropy upto leading correction

given by

Sid = π
√
−D −

ln
(∣∣g ( 2i√

−D

) ∣∣2 412

D6

)
if D ≡ 0(mod 4)

ln
(∣∣g ( 4i

i+
√
−D

) ∣∣2 (16D)6

(1−D)12

)
if D ≡ 1(mod 4).

is called the identity class of the class group.

Let us check that this definition is compatible with the class group operation. Let

[m, r, n] be one class. We have that
[
1, 0,−D

4

]
∗[m, r, n]= [m, r, n]. Let τ, τ ′ and

τ̂ be the corresponding attractor points in the moduli space. Then we show that

τ̂ = τ ′. Since
[
1, 0,−D

4

]
=
[
−D

4
, 0, 1

]
, thus α = 1, β = γ = 0 using Corollary 6.12.

Thus by Eq. (7.11), we get τ̂ = τ ′.



8. DIRECTIONS FOR FURTHER

WORK

Although much of the theory of automorphic forms appears in string theory, one

part which was discovered as recently as 2012 by Dabholkar, Murthy and Zagier

(DMZ) is most relevant to the materials discussed in this thesis in previous chap-

ters. In [17], DMZ begin by proving a structure theorem for Jacobi forms. They

prove that every Jacobi form ϕ can be decomposed into a finite part ϕF and a

polar part ϕP . They go on proving that the finite part ϕF is a mock Jacobi form

which are a mix of Jacobi forms and mock modular forms. Then they analyse

its relevance in string theory relating the mock Jacobi form to the degeneracy of

single centered black holes in Type IIB string theory compactified on K3 × T 2.

The proof of the structure theorem mentioned above requires the theory of Apell

Lerch sums and has rich mathematical content. We will now outline the result

precisely in terms of the physical quantities discussed in the thesis.

Recall that the partition function for the theory is given by

1

Φ10(Ω)
=
∑
m≥−1

ψm(τ, z)wm. (8.1)

We now define the polar part of ψm as follows,

ψPm(τ, z) :=
p24(m+ 1)

η24(τ)

∑
s∈Z

qms
2+sζ2ms+1

(1− ζqs)2 (8.2)

where q = e2πiτ and ζ = e2πiz. η(z) = q
1
24

∏∞
n=1(1 − qn) is the Dedekind eta

function. Also p24(n) counts the number of partitions of an integer n into 24
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parts. Define the finite or Fourier part of ψm as

ψFm := ψm − ψPm. (8.3)

It turns out that ψFm is a mock Jacobi form of weight−10 and indexm. The indexed

degeneracies of the single-centered black hole of magnetic charge invariant Q2/2 =

m which is obtained from the attractor mechanism, are the Fourier coefficients of

the function ψFm. To be precise, if we have the Fourier expansion of ψFm as follows,

ψFm =
∑
n,r

c(n, r)qnζr (8.4)

then the indexed degeneracy dmicro(n,m, r) corresponding to the single-centered

black holes are given by

dmicro(n,m, r) = (−1)r+1c(n, r). (8.5)
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