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1 Introduction
Spinor-helicity formalism is a technique which makes scattering amplitude calculations
incredibly simple. The tremendous power of this technique shows up when we try to
compute gluon scattering amplitudes in Ynag-Mills theory. We will describe an example
in next subsection. Table 1 is enough to motivate the need of techniques other than the
standard Feynman rules to compute amplitudes and the spinor-helicity formalism does
the same. After long and tedious computations involving thousands of terms, the final

# particles # Feynman Diagrams
4 4
5 25
6 220
7 2485
8 34300
9 559405
10 10525900

Table 1: Number of Feynman Diagrams for given number of particles

amplitude squared turns out to be simple. This hints towards a method that could bypass
the redundancies in each Feynman diagram. In particular, standard Feynman rules
for massless particles have gauge redundancies which increase in complications as the
number of external legs increase. Spinor helicity formalism bypasses these complications
by expressing all kinematic variables in terms of what are called helicity spinors. We will
mostly follow Chapter 27 of [1] adding stuff wherever necessary.

1.1 An Example from Yang-Mills Theory

We begin with an example from Yang-Mills theory. The YM Lagrangian of N fermions
{ψi}, N scalar fields {φi} interacting with N2 − 1 vector gauge bosons {Aa

µ} is

L = −1

4

(
F a
µν

)2− 1

2ξ

(
∂µAa

µ

)2
+ (∂µc̄a)

(
δac∂µ + gfabcAb

)
cc + ψ̄i

(
δiji/∂ + g /A

a
µT

a
ij −mδij

)
ψi

+
[(
δki∂µ − igAa

µT
a
ij

)
φi

]? [(
δki∂

µ − igAaµT a
ij

)
φi

]
−M2φ?

iφi,

where
F a
µν := ∂µA

a
ν − ∂νA

a
µ + gfabcAb

µA
c
ν ,
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/A
a is γµAa

µ with γµ being the Dirac gamma matrices, {T a}N2−1
a=1 is the basis of the Lie

algebra su(N) of SU(N), fabc are the structure constants of SU(N) defined as

[T a, T b] = ifabcT c,

ξ, ca, c̄a are the Fadeev-Popov ghosts and g is the coupling constant. The kinetic term
in the Lagrangian is

Lkin =− 1

4

(
∂µA

a
ν − ∂νA

a
µ

)2 − 1

2ξ

(
∂µAa

µ

)2
+ ψ̄i(i/∂ −m)ψi

−φ∗
i ( �+M2

)
φi − c̄a�ca.

We can read of the gluon propagator (we will mostly be dealing with gluon scattering
amplitudes) using our knowledge of photon propagator:

k
a, µ b, ν ≡ i

−gµν + (1− ξ)kµkν
k2

k2 + iε
δab

For the demonstration of the spinor-helicity formalism, we just need gluon propagator
and its three point and four point vertex. The corresponding interaction term in the
Lagrangian is,

Lint = −gfabc (∂µA
a
ν)A

b
µA

c
ν − 1

4
g2 f eabAa

µA
b
v f

ecdAc
µA

d
ν (1.1)

k

pq

b, ν

c, ρ

a, µ ≡ gfabc [gµν(k − p)ρ + gνρ(p− q)µ + gρµ(q − k)ν ]

a, µ d, σ

b, ν c, ρ

≡
−ig2

[
fabef cde (gµρgνσ − gµσgνp)+

facef bde (gµνgpσ − gµσgνp)+

fadef bce (gµνgρσ − gµρgνσ)
]

3



With this vertex, let us see what is the scattering amplitude of gg → gg process. We will
get four diagrams: s, t, u channel and a 4−vertex as above. They are shown in Figure 1.

p2

p1

p3

p4

ε2, b

ε1, a

ε3, c

ε4, d

(a) s-channel

p3p2

p4p1

ε3, cε2, b

ε4, dε1, a

(b) t-channel
ε2, b

ε1, a ε4, d

ε3, c

p2

p4

p1

p3

(c) u-channel

ε1, a ε4, d

ε2, b ε3, c

(d) 4-vertex

Figure 1: gg → gg Feynmann diagrams

The s-channel gives the contribution (in ξ = 1 gauge)

iMs (p1p2 −→ p3p4)

= −ig
2

s
fabef cde [(ε1 · ε2) (p1 − p2)

µ + εµ2 (p2 + q) · ε1 + εµ1 (−q − p1) · ε2]
× [(ε?4 · ε?3) (p4 − p3)

µ + ε?µ3 (p3 + q) · ε?4 + ε?µ4 (−q − p4) · ε?3]

(1.2)

where as usual s = q2 = (p1 + p2)
2 = (p3 + p4)

2. We can use the transversality condition
pi · εi = 0 to simplify the above amplitude but the expansion of the product is still a
mess. If we compute all the four contributions, square it and sum over polarisation and
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colors, then we get (Warning! Don’t try by hand, it has more than 1000 terms) :

1

256

∑
polarisations

color

|M|2 = g4
9

2

[
3− tu

s2
− su

t2
− st

u2

]

which is incredibly simple. Here s, t, u are the Mandelstram variables (s is given above)
given by

s ≡ (p1 + p2)
2 = (p3 + p4)

2 ,

t ≡ (p2 − p3)
2 = (p1 − p4)

2 ,

u ≡ (p2 − p4)
2 = (p1 − p3)

2 .

We will see that spinor-helicity formalism will bypass the difficult computations. Al-
though we can do computations on software but it also gets saturated very soon. For
example gg → ggg has over 10000 terms. Thus spinor-helicity formalism comes in handy
for these computations. Note that the complications appeared because of the polar-
isations coming from fields Aa

µ which required gauge invariance to be massless. The
spinor-helicity formalism gets rid of the gauge fields Aa

µ by writing them in terms of
spinors. This can be done since vector fields are (1

2
, 1

2
) representations of SO(1, 3) and

spinors are (1
2
,0), (0, 1

2
). With this we will show that for gg → gg scattering, there are

only two non-vanishing contributions:

M̃ (1−2−3+4+) =
〈12〉4

〈12〉〈23〉〈34〉〈41〉

M̃ (1−2+3−4+) =
〈13〉4

〈12〉〈23〉〈34〉〈41〉
.

(1.3)

The notations will be clear in the coming sections.

2 Dirac Equation and Spinors
We begin by discussing spinor representations.

2.1 Spinor Representations

Spinors are are spin 1
2

representations of SO(1, 3). Let J i, K i be rotation and boost
generators. Then the Lorentz algebra is

[Ji, Jj] = iεijkJ
k

[Ji, Kj] = iεijkK
k

[ki, kj] = −iεijkJk.

5



In terms of raising and lowering operators J+
i , J

−
i :

J+
i =

Ji + iKi

2
, J−

i =
Ji − iKi

2
,

the algebra is [
J+
i , J

+
j

]
= iεijkJ

+
k[

J−
i , J

−
j

]
= iεijkJ

−
k[

J−
i , J

+
j

]
= 0.

We easily identify that so(1, 3) = su(2) ⊕ su(2) where so(1, 3) and su(2) is the Lie
algebra of SO(1, 3) and SU(2) respectively. Since su(2) ⊕ su(2) = sl(2,R) which is
the Lie algebra of SL(2,C) which is simply connected, SL(2,C) is the universal cover
of SO(1, 3). Spinor representations of SO(1, 3) are fundamental and antifundamental
representations of SL(2,C) :

SL(2,C) 3M 7−→ TM : VFund → VFund, VFund
∼= C2;(

z

ω

)
7→M

(
z

ω

)
Fundamental

M 7−→ TM? : VAntifund → VAntifund, VAntifund
∼= C2;(

z

ω

)
7→M?

(
z

ω

)
Antifundamental,

where M? is the complex conjugate of the matrix M. The fundamental representation
is
(
1
2
, 0
)

and the vectors ψL ∈ VFund are called Left handed Weyl spinors and the an-
tifundamental representation is

(
0, 1

2

)
and the vectors ψR ∈ VAntifund are called right

handed Weyl spinors. We combine these to write the Dirac spinor as a 4 component
vector {ψa}4a=1 (that is we consider the direct sum

(
1
2
, 0
)
⊕
(
0, 1

2

))
:

ψ =


ψ1

ψ2

ψ3

ψ4

 .

The Dirac spinor ψ satisfies the Dirac equation:

(iγµ∂µ −m)ψ′(x) = 0,

where the γ-matrices satisfy the Clifford algebra

{γµ, γν} = 2gµν

6



We also define ψ̄ = ψ†γ0 =
(
ψ†
1, ψ

†
2, ψ

†
3, ψ

†
4

)
. We will very often use the slash notation

/v = γµvµ,

so that
/v/v = v21.

Indeed

/v/v = vµγµv
νγν

=
1

2
(vµvνγµγν + vνvµγνγµ)

=
1

2
vµvν {γµ, γν}

=
1

2
vµvν2gµν1

= v21.

So the Dirac equation is (i/∂ − m)ψ = 0. To see how ψ(x) transforms under Lorentz
transformation, we need the generators of the representation. With the Dirac γ-matrices,
we construct the generators:

Σµν =
i

4
[γµ, γν ] .

Then using the Clifford algebra, we can show that Σµν satisfies Lorentz algebra:

[Σµν ,Σρ,σ] = i (gνρΣµσ − gµρΣνσ − gνσΣµµ + gµσΣνρ)

Thus ψ(x) transforms as
ψ(x) −→ SΛψ

(
Λ−1x

)
where

SΛ = exp (iωµνΣ
µν) (2.1)

and ωµν are the rotations and boosts of Λ :

ω0i = −ωi0 = βi (boosts)

ωij = εijkθ
k (rotations)

Weyl representation. If we pick γ-matrices to be

γµ =

(
0 σµ

σ̄µ 0

)

7



where σµ = (1, ~σ), σ̄µ = (1,−~σ) and ~σ = (σ1, σ2, σ3) then

ωµνΣ
µν = ω0iΣ

0i + ωi0Σ
i0 + ωijΣ

ij

= 2βiΣ
0i + εijkθ

kΣij

= 2βi

(
− i

2

(
σi 0

0 −σi

))
+

1

2
εijkθ

kεikl

(
σ` 0

0 σ`

)

= −iβi

(
σi 0

0 −σi

)
+

2

2
δ`kθ

k

(
σ` 0

0 σ`

)

= −iβi

(
σi 0

0 −σi

)
+ θi

(
σi 0

0 σi

)
,

where we used

Σ0i = − i

2

(
σi 0

0 −σi

)
, Σij =

1

2
εijk

(
σk 0

0 σk

)
and εijkε

ij` = 2δ`k. Thus we get

exp (iωµνΣ
µν) = exp

(
i

(
−iβi

(
σi 0

0− σi

)
+ θk

(
σk 0

0 σk

)))

=

(
exp [iθiσ

i + βiσi] 0

0 exp [−βiσi + iθiσ
i]

)

So if we write ψ(x) =

(
ψL(x)

ψR(x)

)
, then ψ(x) −→ SΛψ (Λ−1x) gives

ψL −→ exp(~z · ~σ)ψL

ψR −→ exp (−~z? · ~σ)ψR,
(2.2)

where ~z = ~β+i~θ is composed of the three rotation vector ~θ = (θ1, θ2, θ3) and boost vector
~β = (β1, β2, β3). Clearly the map ~z 7→ exp(~z · ~σ) is a map from SO(1, 3) −→ SL(2,C).
To see this, note that

det(exp(~z · ~σ)) = exp(tr(~z · ~σ)) = e0 = 1,

where we used the fact that tr (σi) = 0. So

M(~z) := exp(~z · ~σ) ∈ SL(2,C).

Next observe that if ε = iσ2 then ε is the 2× 2 antisymmetric symbol with ε2 = −1.

Lemma 2.1. With the notations as above, we have
8



(i) ε~σε = ~σ? = ~σT where ~σT = (σT
1 , σ

T
2 , σ

T
3 ),

(ii) M(~z)−1 = −εM(~z)T ε.

Proof. The proof of (i) is straightforward. To prove (ii), observe that by (i), we have

ε~σT ε = ~σ.

So

−εM(~z)T ε = ε−1 exp
(
~z · ~σT

)
ε

= exp
(
~z ·
(
−ε~σT ε

))
= exp(−~z · ~σ)
=M(~z)−1.

Lemma 2.2. Let ψ(x) =

(
ψL(x)

ψR(x)

)
be a Dirac spinor. Then under Lorentz transfor-

mation Λ with angle and boost parameters θi and βi, ψR(x) transforms as

εψR(x) →M(~z)?εψR(Λ
−1x),

where ~z = ~β + i~θ as usual.

Proof. By Eq. 2.2, we have

ψR −→ exp (−~z? · ~σ)ψR.

So

εψR −→ε exp (−~z? · ~σ)ψR

= ε exp (−~z? · ~σ) ε−1εψR

= exp
(
−~z? · ε~σε−1

)
∈ ψR

= exp (~z? · ε~σε) εVR
= exp (~z? · ~σ?) εψR

=M(z)?εψR.

9



Thus in a Dirac spinor ψ =

(
ψL

ψR

)
in the weyl representation, ψL transforms in the

the fundamental representation of SL(2,C) and εψR transforms in the antifundamen-
tal representation of SL(2,C). So it is conventional to denote a Dirac spinor in Weyl
representation by

ψ =

(
χα

ψ̃β̇

)
where ψ̃β̇ = εα̇β̇ψ̃

α̇. Under Lorentz transformation ~z = ~β + i~θ,

χα −→ (M(~z)χ)α

and
ψ̃β̇ −→

((
M(~z)†

)−1
ψ̃
)
β̇

Indeed note that(
M(~z)†

)−1
=
(
M(~z)−1

)†
=
(
−εM(~z)T ε

)†
= −εM(~z)?ε

where we used Lemma 2.1(ii). So we get that

εψ̃ −→M(~z)?εψ̃

= ε
(
M(~z)†

)−1
ε−1εψ̃

= ε
(
M(~z)†

)−1
ψ̃.

This gives
ψ̃β̇ −→

((
M(~z)†

)−1
ψ̃
)
β̇
.

Remark 2.3. Left and right handed spinor indices α and β̇ respectively are lowered and
raised using the antisymmetric symbol ε:

εαβ = −εαβ = εα̇β̇ = −εα̇β̇ =

(
0 1

−1 0

)
.

Lemma 2.4. The quantities εαβψαχβ and εα̇β̇ψ̃αχ̃β are Lorentz invariant.

Proof. We have

εαβψαχβ = ψT
LεχL where ψL =

(
ψ1

ψ2

)

10



Thus
εαβψαχβ −→ (M(~z)ψL)

T εM(~z)χL

= ψT
LM(~z)T εM(~z)χL

= ψT
LεM(~z)−1M(~z)χL

= ψT
LεχL

where we used ε−1M(~z)T ε = M(~z)−1 (Lemma 2.1(ii)). Similarly εα̇β̇ψ̃α̇χ̃β = ψ̃T
Rεχ̃R =(

εψ̃R

)T
χ̃R, so that εα̇β̇ψ̃α̇χ̃β̇ −→ ψ̃T

Rεχ̃R.

Contractions. For two left handed spinors χ, ψ, we define

χψ ≡ χαψ
α = χαε

αβψβ = −ψβε
αβχα = −ψβ

(
−εβα

)
χα

= ψβχ
β = ψχ,

where we used the Grassmannian nature of the components of the spinor, that is the
components anticommute. Hence the above contraction is symmetric. For right handed
spinors χ̃ and ψ̃, we define

χ̃ψ̃ ≡ χ̃α̇ψ̃α̇ = χ̃α̇εα̇β̇ψ̃
β̇ = −ψ̃β̇εα̇β̇χ̃

α̇ = −ψ̃β̇
(
εβ̇α̇
)
χ̃α̇

= ψ̃β̇χ̃β̇ = ψ̃χ̃,

where we again used the Grasmannian nature of components of a spinor.

2.2 Helicity Spinors

We now define the protagonists of spinor-helicity formalism – the helicity spinors.

Definition 2.5. (Helicity spinors) We define helicity spinors as vectors of C2 which
transform in

(
1
2
, 0
)

or
(
0, 1

2

)
representation of SO(1, 3). The

(
1
2
, 0
)

helicity spinor is
called left-handed and is denoted by χ and the

(
0, 1

2

)
helicity spinors is called right-

handed and denoted by χ̃.

We can interpret helicity spinors as coming from massless Dirac equation:

i/∂ψ(x) = 0.

We can consider plane wave solution:

ψp(x) = u(p)e−ipx + v(p)eipx, with p2 = 0.

The Dirac equation then decouples into a set of two equations if we write ψ =

(
uL

uR

)
:

(Ep + ~p · ~σ)uL(~p) = 0

(Ep − ~p · ~σ)uR(p̄) = 0.

11



Thus we see that we do not need all the four components of a Dirac field. We can
constrain the upper and lower two component to be zero. Thus we have two decoupled
solutions:

χ(x) =

(
χα(x)

0

)
, η(x) =

(
0

ηα̇(x)

)
, (2.3)

where

χα(x) =

∫
d3~p

(2π)3
1√
2Ep

λα(p)
(
ape

−ipx + b†pe
ipx
)

ηα̇(x) =

∫
d3~p

(2π)3
L√
2Ep

λα̇(p)
(
a†pe

−ipx + bpe
ipx
)
,

where ap, a†p and bp, b
†
p are the creation and annihilation operators of the particle and

antiparticle. Then λα and λα̇ are helicity spinors.

We will now show that the left handed and right handed helicity spinors have definite
helicity. The Dirac equation is

i/∂ψ(x) = 0

which in Weyl representation is(
0 i (∂0 + ~σ · ∇)

i (∂0 − ~σ · ∇) 0

)(
ψL(x)

ψR(x)

)
= 0.

With the field decomposition for χ(x) and η(x), we get∫
d3~p

(2π)3
1√
2Ep

(
ap (−iEp − i~p · ~σ) e−ipx + b†p (iEp + i~p · ~σ) eipx

)
λα(p) = 0

=⇒ (Ep + ~p · ~σ)λα(p) = 0.

Similarly λα̇(p) must satisfy
(Ep − ~p · ~σ)λα̇(p) = 0.

Since Ep = |~p|, thus we get

(p̂ · ~σ)λα(p) = λα̇(p), (p̂ · ~σ)λα(p) = −λα(p)

where
p̂ =

~p

|~p|
.

Thus left handed spinors have helicity −1 and right-handed spinors have helicity 1.

With this understanding, we define the following contractions:

〈λχ〉 ≡ εαβλαχβ = λαχ
α = −λαχα = −〈χλ〉

[λχ] ≡ εα̇βλ̃
αχ̃α = λ̃αχ̃α = −λ̃αχ̃α = −[λχ].

(2.4)

12



Wherever we have angular brackets, we understand that it is the contraction of left
handed spinor whereas the square bracket is the contraction of the right handed spinor.
In particular 〈λλ〉 = [λλ] = 0.

2.3 4-Vectors in terms of Helicity Spinors

We can represent 4-vector pµ as a bispinor using helicity spinor as follows:

pαα̇ = pµσαα̇
µ =

(
p0 − p3 −p1 + ip2

−p1 − ip2 p0 + p3

)
.

The indices of the bispinor pαα̇ associated to pµ can be lowered using εαβ, εα̇β̇:

pαα̇ = εαβεα̇β̇p
ββ̇.

The following lemma is straightforward verification:

Lemma 2.6. We have that

(i) gµνσαβ
µ σαβ̇

ν = 2εαβεα̇β̇

(ii) εαβεα̇β̇σ
µββ̇ = σ̄µ

αα̇.

We have the following proposition:

Proposition 2.7. The following are true:

(i) pαα̇ = pµσ̄
µ
αα̇.

(ii) pµ = 1
2
σµαα̇pα̇α = 1

2
σ̄µ
α̇αp

αα̇, where σµαα̇ = (δαα̇, ~σαα̇).

Proof. To prove (i), we directly lower the indices. We have

pαα̇ = εαβεα̇β̇p
ββ̇

= εαβεα̇β̇p
µσββ̇

µ

= gµνp
µεαβεα̇β̇σ

νββ̇

= gµνp
µσ̄ναα̇

= pµσ̄αα̇
µ ,

where we used Lemma 2.6 (ii) in the second last step. The proof of (ii) follows by a
similar application of Lemma 2.6 (i) and hence we omit the details.

Remark 2.8. Proposition 2.7 (ii) gives a recipe to recover the 4-vector from its bispinor
representation. Hence the assignment of a 4-vector to a bispinor is a one to one corre-
spondence.

13



Next observe that

det(pαα̇) = p20 − p21 − p22 − p23 = p2µ = m2.

If pµ is massless then det(pαα̇) = 0. The following lemma is easy to prove:

Lemma 2.9. Let A be a 2× 2 complex matrix with vanishing determinant. Then it can
be written as a product of a column and a row in order.

Proof. We first note that such matrix A can only have the following forms:(
a b

0 0

)
,

(
0 b

0 d

)
,

(
a 0

c 0

)
,

(
0 0

c d

)
,

(
a λa

b λb

)
, a, b, c, d ∈ C, λ ∈ C\{0}.

We explicitly provide the decomposition for the first and the last case and others are
similar. Indeed we can write(

a b

0 0

)
=

(
a

0

)(
1 b/a

)
,

(
a λa

b λb

)
=

(
a

b

)(
1 λ

)
.

In particular, for a null vector pµ we can write:

pαα̇ = λαλ̃α̇.

Indeed, we take

λα =
z√

p0 − p3

(
p0 − p3

−p1 − ip2

)
, λ̃α̇ =

z−1√
p0 − p3

(
p0 − p3 − p1 + ip2

)
(2.5)

with

p0 =
√

(p1)2 + (p2)2 + (p3)2 and z ∈ C\{0}.

We will generalise to massless complex momenta in later sections which will be useful in
analytic continuation. If the momentum is real then(

λαλ̃α̇
)†

= λαλ̃α̇ =⇒ λα =
(
λ̃α̇
)†

=⇒ z = (z?)−1 =⇒ |z|2 = 1

=⇒ z ∈ S1 := {z ∈ C | |z| = 1}.

We now show that if pµ transforms as 4-vector then λα, λ̃α̇ in pαα̇ = λαλ̃α̇ transform
as left-handed and right-handed spinors respectively. We begin by proving the following
lemma:

14



Lemma 2.10. Let pµ transform as a 4-vector: pµ → Λµ
νp

ν. Then pαα̇ transforms as
pαα̇ −→ M(~z)αβ p

ββ̇
(
M(~z)†

)α̇
β̇

where M(~z) = exp(~z · ~σ) and ~z = ~β + i~θ with ~β and ~θ

being boost and rotation associated to Λµ
ν .

Proof. We know that the Dirac matrices satisfy

S−1
Λ γµ SΛ = Λµ

νγ
ν

where SΛ = exp (iωµνΣ
µν) (see Eq. 2.1). In Weyl representation

γµ =

(
0 σµ

σ̄µ 0

)

and we calculated SΛ:

SΛ =

(
exp(~z · ~σ) 0

0 exp (−~z? · ~σ)

)
.

So we have that
exp(−~z · ~σ) σµ exp (−~z? · ~σ) = Λµ

νσ
ν . (2.6)

We know that
ΛTgΛ = g =⇒ gΛT g = Λ−1.

In index notation, we have

gµν
(
ΛT
)ν

ρ
gρσ =

(
Λ−1

)σ
µ

=⇒
(
ΛT
)
µρ
gρσ =

(
Λ−1

)σ
µ

=⇒ Λρµg
ρσ =

(
Λ−1

)σ
µ
.

Using this, we get
(Λp)αα̇ = Λµ

νp
νσαα̇

µ = pνΛµνg
µρσαα̇

p

= pν
(
Λ−1

)ρ
ν
σαα̇
p

= pν [exp(~z · ~σ)σν exp (~z? · ~σ)]αα̇ ,

where we used Eq. 2.6 for Λ−1. Thus we see that

(Λp)αα̇ =
(
M(~z)pM(~z)†

)αα̇
,

where p = pαα̇.

Proposition 2.11. Let pαα̇ = λαλ̃α̇ be the decomposition of a 4-vector pµ into product
of row λ̃α̇ and column λα. Then λα and λ̃α̇ transforms as left-handed spinor and right-
handed spinor respectively.

15



Proof. By Lemma 2.10, under Lorentz transformation, p = pαα̇ transforms as

p −→M(~z)pM(~z)†.

Thus if we write p = λλ̃ then we have

λλ̃ −→M(~z)λλ̃M(~z)†.

Thus under Lorentz transformation,

λ −→M(~z)λ

which is correct transformation of left-handed spinor. Next

λ̃ −→ λ̃M(~z)†.

Thus
εα̇β̇λ̃

β̇ −→ εα̇β̇

(
λ̃M(~z)†

)β̇
.

Note that L.H.S is a 2 component vector, and hence this can be written as a matrix
transformation:

ελT −→ε
(
λ̃M(~z)†

)T
=ε
(
M(~z)†

)T
λ̃T

=− εM(~z)?εελ̃T

=
(
M(~z)†

)−1
ελ̃T ,

Thus we have
λ̃α̇ −→

((
M(~z)†

)−1
λ̃
)
α̇

which is the right-handed spinorial transformation rule.

2.3.1 Momentum Conservation and Schouten’s Identity

Lemma 2.12. Let pαα̇ = λαλ̃α̇, qαα̇ = χαχ̃α̇, then we have

p · q = 1

2
〈λχ〉[χλ].

16



Proof. By definition, we have

p · q = gµνp
µqν

=
1

4
gµνσ

µ
αα̇λ

αλ̃α̇σν
ββ̇
χβχ̃β̇

=
1

2
εαβεα̇β̇λ

αλ̃α̇χβχ̃β̇

=
1

2
λαχαλ̃

α̇χ̃α̇

=
1

2
〈λχ〉[χλ],

where we used Proposition 2.7 (ii) in first step and Lemma 2.6 (i) in second step.

Remark 2.13. By Lemma 2.12, it is easy to see that

p2 =
1

2
〈λλ〉[λλ] = 0 =

1

2
〈χχ〉[χχ] = q2.

Notations. If pαα̇ = λαλ̃α̇ then we will write

λα = |p〉 λ̃α = [p|
λα = 〈p| λ̃α = [p|.

So we have
pαα̇ = |p〉 [p|, pαα̇ = 〈p||p]

With this notation, we can forget about the computations in Lemma 2.12 and quickly
write

p · q = pµqµ =
1

2
〈pq〉[qp].

We record a small result which will be useful in future computations.

Lemma 2.14. For real momenta p and q, we have that

〈pq〉? = [qp].

Proof. Suppose pαα̇ = λαλ̃α̇, qαα̇ = χαχ̃α̇. We have

〈pq〉? =
(
εαβλαχβ

)
= (εαβ)?(λα)

?(χβ)
?

= −εα̇β̇λ̃
α̇ ˜̇β

= −[pq]

= [qp],

where we used Remark 2.3 and Eq. 2.5 in third step and Eq. 2.4 in last step.
17



We now apply above results to massless momenta. Suppose we have n incoming momenta
pi. Then momentum conservation implies

n∑
i=1

pi = 0.

Converting the above zero four vector into bispinor using σµ, we see that this gives
n∑

i=1

|pi〉[pi| = 0,

where |pi〉[pi| is the bispinor of pi. To make notations more light, we write |i〉[i| for the
bispinor of the momentum pi. Thus the momentum conservation can be written as

|1〉[1|+ |2〉[2|+ · · ·+ |n〉[n| = 0.

We can cast the momentum conservation equation into more useful form by contracting
above equation with arbitrary spinors 〈i| and |k] from the left and right respectively to
get:

n∑
j=1

〈ij〉[jk] = 0. (2.7)

Remark 2.15. The above simple looking equation us terribly useful when we simplify
scattering amplitudes as we will see soon in next sections. For example, for four momen-
tas, contracting with 〈1| and |2] from the left and right respectively, we get

〈11〉[12] + 〈12〉[22] + 〈13〉[32] + 〈14〉[42] = 0,

which gives
〈13〉[32] = −〈14〉[42]. (2.8)

Contracting with other combinations, we get many more such equations, for example
contracting with 〈2| and |3] from the left and right respectively gives

〈21〉[13] = −〈24〉[43].

We will use such equations very often.

We now prove an important identity called Schouten’s identity.

Theorem 2.16. Let {|i〉, 〈i|} be the left-handed spinors coming from bispinor represen-
tation of four massless momentums pi. Then we have

〈23〉〈41〉+ 〈31〉〈42〉+ 〈12〉〈43〉 = 0.

18



Proof. Since the three spinors |1〉, |2〉, |3〉 are 2 component vectors, thus all the three
cannot be linearly independent. This gives

|1〉 = a|2〉+ b|3〉, for some a, b ∈ C.

Taking inner product with 〈2| we get

〈21〉 = b〈23〉 =⇒ b =
〈21〉
〈23〉

.

Similarly

〈31〉 = a〈32〉 =⇒ a =
〈31〉
〈32〉

.

This gives

|1〉 = 〈31〉
〈32〉

|2〉+ 〈21〉
〈23〉

|3〉.

Contracting with the spinor 〈4|, we get

〈41〉 = 〈31〉〈42〉
〈32〉

+
〈21〉
〈23〉

〈43〉

=⇒ 〈41〉 = −〈31〉
〈23〉

〈42〉 − 〈12〉
〈23〉

〈43〉.

Rearranging gives the required identity.

2.4 Polarisation in terms of Helicity-Spinors

Spin 1 massless representation of Poincareǵroup has 2 degree of freedom. This can be
embedded into a vector field Aµ along with gauge invariance. The spin 1 free Lagrangian
is

L = −1

4
F 2
µν

where Fµν = ∂µAν − ∂νAµ. L is invariant under the gauge transformation

Aµ(x) −→ Aµ + ∂µΛ(x)

for some scalar function λ(x). Equation of motion is

�Aµ − ∂µ (∂νA
ν) = 0,

where � = ∂2 is the D’Alembertian operator. In Coloumb gauge, A0 = 0 = ∂iA
i. So

eqution of motion becomes �Ai = 0. We can write plane wave solution:

Aµ(x) =

∫
d3~p

(2π)3
εµ(p)eipx.
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Equation of motion becomes p2 = 0 and piεi = 0 and ε0 = 0 by gauge choice. For
pµ = (E, 0, 0, E), we can choose a basis for polarisations εµ as

εµ+ =
1√
2
(0, 1, i, 0), εµ− =

1√
2
(0, 1,−i, 0)

These are called transverse polarisations. The polarisations are normalised so that

ε?µεµ = −1.

But note that εµεµ = 0, that is the polarisations are null. Thus their bispinors have
vanishing determinant and hence we can also write εµ in terms of spinors. We also see
that ε+µε−µ = −1. We will now write polarisation vectors with arbitrary momenta in
terms of spinors. To do this let rµ be a null vector with r · p 6= 0. For a given momenta,
write

pαα̇ = |p〉[p|, rαα̇ = |r〉[r|.

The vector rµ is arbitrary except the restriction r2 = 0 and r · p 6= 0. It is called the
reference vector.

Lemma 2.17. We can write an arbitrary polarisation with momenta p as

[
ε−p (r)

]αα̇
=

√
2
|p〉[r|
[pr]

,
[
ε+p (r)

]αα̇
=

√
2
|r〉[p|
〈rp〉

.

Proof. We just need to check three conditions:

(a) ε+p (r) · ε−p (r) = −1,

(b) ε+p · ε+p = ε−p · ε−p = 0,

(c) ε±p · p = 0.

We check the first one and leave the rest for the reader to verify as they are similar. By
Lemma 2.12, we have

ε−p (r) · ε+p (r) =
1

2

2

[pr]〈rp〉
〈pr〉[pr]

= − 1

[pr]〈rp〉
[pr]〈rp〉

= −1.
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Remark 2.18. We will often take rµ to be momentum of another gluon in the problem.
If the gluons are labelled by i, then we can write εi(j) for the polarisations of the gluon
with momentum pµi and reference momentum pµj . Thus gluon scattering for any massless
scattering can be expressed in terms of [ij] and 〈ij〉.

We now list various Lorentz contractions which is easy to check:

ε−1 (i) · ε−2 (j) =
〈12〉[ji]
[1i][2j]

, ε−1 (i) · ε+2 (j) =
〈1j〉[2i]
[1i]〈j2〉

ε+1 (i) · ε+2 (j) =
〈ij〉[21]
〈i1〉〈j2〉

, ε−1 (i) · p3 =
1√
2

〈13〉[3i]
[1i]

,

ε+1 (i) · p3 =
1√
2

[13]〈3i〉
〈i1〉

, p1 · p2 =
1

2
〈12〉[21].

(2.9)

Note that flipping helicity flips 〈· · · 〉 ↔ [· · · ]. This is called parity conjugation symmetry.

2.4.1 Little Group Covariance

Let pαα̇ = |p〉[p| be a massless momentum. Recall that the little group of p are those
Lorentz transformations which leave the momentum invariant. Note that pαα̇ is invariant
under scalings:

|p〉 7−→ z|p〉,
[
p| 7−→ z−1[p|, z ∈ C\{0}.

Thus little group of pµ should be rescalings of this form. If we have a polarisation with
momentum p, then under little group rescaling of p, we see that

ε−p (r) =
√
2
|p〉[r|
[pr]

−→ z2ε−p (r),

ε+p (r) =
√
2
|r〉[p|
〈rp〉

−→ z−2ε+p (r).

Note that polarisations are independent of rescaling associated to the reference vector r
as it should be. Little group covariance puts strong restrictions on amplitudes. It will
be particularly useful when we generalise to complex momenta. For now, we content
ourselves with the consistency conditions for amplitudes using little group covariance.
For example consider the scattering of two positive and two negative helicity gluons. The
kinematic factor in the amplitude can be

M̃
(
1−, 2−, 3+, 4+

)
=

〈21〉[34]2

[21][14]〈41〉
, or 〈12〉3

〈23〉〈34〉〈41〉

but cannot be 〈12〉〈34〉 as it is not invariant under little group scaling. A nice compact
rule to determine if an amplitude is invariant under little group scaling is the following
remark:
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Remark 2.19. (Little group invariance check) The total power of |i〉 and 〈i| minus the
total power of |i] and [i| must be 2 for negative helicity gluon and −2 for positive helicity
gluon. Here we count the power of a spinor to be 1 if it is in numerator and −1 if it is
in denominator.

2.5 Dirac Spinors

As we saw in Eq. 2.3, solutions to massless Dirac equaition can be described by two
component vectors. So by slight abuse of notation, it is natural to define the following
notation: in Weyl representation, we write

|p〉 =

(
λα

0

)
, |p] =

(
0

λ̃α̇

)
, [p| =

(
0 λ̃α̇

)
, 〈p| = (λα 0) .

It will be clear from context whether 〈p|, |p] represent four component Dirac spinor (with
lower or upper two components zero) or a helicity-spinor. We also have

γµαα̇ =

(
0 σµαα̇

σ̄µ
αα̇ 0

)
.

We have the following lemma:

Lemma 2.20. Assume the above notation for Dirac spinors. For massless momentas
p, q, r and s, the following statements hold:

(a) [pγµq] = 0 = 〈pγµq〉.

(b) 〈pγµq] = 〈pσµq] = [qσ̄µ
α̇αp〉 = [qγµp〉 .

(c) 〈pγµq] 〈rγµs] = 2〈pr〉[sq].

(d) 〈p/rq] = 〈pr〉[rq].

Proof. (a) We have

[pγµq] = (∗ 0)

(
0

∗

)
= 0.

The other case of (a) follows similarly.
(b) We have

〈pγµq] = (λα 0)

(
0 σµ

σ̄µ 0

)(
0

χ̃α̇

)

=
(
0 λασ

µ
)( 0

χ̃α̇

)
= λασ

µαα̇χ̃α̇.
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So first equality is clear. Next

λασ
µαα̇χ̃α̇ = λβεαβεα̇β̇σ

µαα̇χ̃β̇

= λβσ̄ββ̇χ̃
β̇.

So the second and third equality follow.
(c) We have

〈pγµq] 〈rγµs] = gµν 〈pσµq] 〈rσνs]

= 2〈pr〉[sq],

where we used Lemma 2.6 (i) and the definition of angle and square brackets.
(d) We have

〈p/rq] = 〈p(rµγµ)q] = 〈p(|r〉[r|)q] = 〈pr〉[rq].

3 First Examples: Yukawa Theory and QED
Although the real power of spinor helicity formalism comes into play when we compute
gluon scattering amplitude, we will anyway demonstrate its applicability in compute
the scattering amplitudes in some simple theories. SInce we formulated the momentum
conservation condition in terms of spinors taking all momentas to be incoming, thus our
convention will be that we will take all momentas to be incoming in our computations.
The Mandelstram variables with our convention become:

s ≡ (p1 + p2)
2 = 2p1 · p2 = 〈12〉[21] = (p3 + p4)

2 = 2p3 · p4 = 〈34〉[43],
t ≡ (p2 + p3)

2 = 2p2 · p3 = 〈23〉[32] = (p1 + p4)
2 = 2p1 · p4 = 〈14〉[41],

u ≡ (p2 + p4)
2 = 2p2 · p4 = 〈24〉[42] = (p1 + p3)

2 = 2p1 · p3 = 〈13〉[31].

(3.1)

With this notation, we see that
s+ t+ u = 0. (3.2)

Indeed since all momenta are massless, we have

s+ t+ u = 2(p1 · p2 + p1 · p4 + p1 · p3) = 2p1 · (p2 + p3 + p4) = −2p1 · p1 = 0,

where we used momentum conservation p1 + p2 + p3 + p4 = 0.
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3.1 Yukawa Theory: φf −→ φf

In Yukawa theory, we have fermions and scalars. The Lagrangian is:

LYukawa = iψ̄ /∂ψ − 1

2
∂2φ+ gφψ̄ψ.

We will compute the scattering amplitude of φf −→ φf via fermion exchange where
φ and f denote a scalar and a fermion respectively. Two diagrams contribute to the
amplitude. They are shown below.

p1

p2

p3

p4

φ1

f2

φ3

f4

(a) φ1f2 −→ φ3f4

p1

p2

p3

p4

φ3

f2

φ1

f4

(b) φ3f2 −→ φ1f4

Figure 2: φf −→ φf Feynman diagrams. The dashed line denotes scalar and the bold
lines denote fermions.

We will make a choice of helicities of the two fermions and then we will have to sum
over all possible helicities. First notice that both the fermions cannot have same helicity
since 〈pγµq〉 = [pγµq] = 0 by Lemma 2.20 (a) and the amplitude would be zero. Suppose
f2 is left-handed (negative helicity) 〈2| and f4 is right-handed (positive helicity) |4]. The
amplitude for the two diagrams is

iM
(
φ1f

−
2 φ3f

+
4

)
= (ig)2

〈2| − γµi (p1 + p2)µ |4]
(p1 + p2)

2 + (1 ↔ 3)

= ig2
〈2
(
/p1 + /p2

)
4]

(p1 + p2)
2 + (1 ↔ 3)

= ig2
〈
2 /p14

]
+
〈
2 /p24

]
(p1 + p2)

2 + (1 ↔ 3).
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Using Lemma 2.20 (d) and Lemma 2.12, we get

iM
(
φ1f

−
2 φ3f

+
4

)
= g2i

(
〈21〉[14]
2p1 · p2

)
+ (1 ↔ 3)

= ig2
(
〈21〉[14]
〈21〉[12]

)
+ (1 ↔ 3)

= ig2
[14]

[12]
+ (1 ↔ 3)

= ig2
[14]

[12]
+ ig2

[34]

[32]

= ig2
(
[14]

[12]
+

[34]

[32]

)
,

where we used 〈22〉 = 0. Next

∣∣iM (
φ1f

−
2 φ3f

+
4

)∣∣2 = g4
(
[14]

[12]
+

[34]

[32]

)(
[14]

[12]
+

[34]

[32]

)?

= g4
(
[14]

[12]
+

[34]

[32]

)(
〈41〉
〈21〉

+
〈43〉
〈23〉

)
= g4

(
[14]〈41〉
[12]〈21〉

+
[14]〈43〉
[12]〈23〉

+
[34]〈41〉
[32]〈21〉

+
[34]〈43〉
[32]〈23〉

)
= g4

(
t

s
+

[14]〈43〉[32]〈21〉+ [34]〈41〉[12]〈23〉
[12]〈21〉〈23〉[32]

+
s

t

)
= g4

(
t

s
+
s

t
− 〈23〉[32]〈21〉[12] + [34]〈43〉[32]〈23〉

[12]〈21〉〈23〉[32]

)
= g4

(s− t)2

ts

where we used 〈21〉[14] = −〈23〉[34] and 〈41〉[12] = −〈43〉[32] which is easy to see
from momentum conservation equation (see Remark 2.15). Using parity conjugation
symmetry, we have

∣∣iM (
φ1f

+
2 φ3f

−
4

)∣∣2 = g4
(
[14]〈41〉
[12]〈21〉

+
[14]〈43〉
[12]〈23〉

+
[34]〈41〉
[32]〈21〉

+
[34]〈43〉
[32]〈23〉

)
= g4

(s− t)2

st
.

So total amplitude is ∑
spin

|M(φ1f2φ3f4)|2 = 2g4
(s− t)2

st
.
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3.2 QED: e+e− −→ µ+µ−

Consider the process e+e− −→ µ+µ− via photon exchange in QED. We will find the
amplitude of the process using spinor helicity formalism in high energy limit when we
can take the fermions to be massless. First observe that in QED, the contribution to
this process comes only from s-channel due to the vertices involving same particle and
antiparticle. The Feynman diagram is shown below. Now if we take the electron to be

p1

p2

γ

p3

p4

1

2

3

4

Figure 3: e+e− −→ µ+µ−

left-handed, the positron has to be right handed. To see this, we will do the following:
Let us take the electron to be right handed and denote it by |1]. Since [2γµ ⊥] = 0

thus the positron has to be left banded. Similarly take µ− to be 〈3| then µ+ is 4].
Since helicities of left and right handed spinors are opposite and we take all momentas
incoming, this choice of spinors corresponds to the amplitude iM(1+2−3+4−) where the
superscripts indicate the helicities. We have

iM(1+2−3+4−) = (−ie)2〈2γµ1]2−igµν
s

〈3γν4] = 2
ie2

s
[41]〈23〉,

where we used Lemma 2.20 (c). Amplitude squared is then given by∣∣M (
1−2+3−4+

)∣∣2 = 4e4
[41]〈14〉〈23〉[32]

s2

== 4e4
t2

s2
.

Other helicity combinations are M (1+2−3+4−) ,M (1−2+3+4−) and M (1+2−3−4+). By
parity conjugation symmetry

M
(
1+2−3+4−

)
= 2

ie2

s
〈41〉[23].

So ∣∣M (
1+2−3+4−

)∣∣2 = 4
e4

s2
〈41〉[14][23]〈32〉 = 4e2

u2

s2
.

The other amplitude M (1−2+3+4−) can be computed just by 1 ↔ 2 exchange. We get∣∣M (
1−2+3+4−

)∣∣2 = 4e4
s2

u2
,
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where we used the fact that under 1 ↔ 2 exchange t↔ u. Thus we get

1

4

∑
spins

|M|2 = 2e4
t2 + u2

s2

which matches with the QED calculation with me = mµ = 0.

4 QCD: Gluon Scattering
We will now consider gluon scattering in QCD and YM theory. Since each gluon comes
with a polarisation in the amplitude, thus we will have polarisation contractions in the
amplitude. We use the freedom of reference vector in polarisation vector to prove strong
constraints on scattering amplitude. Take rµ to be the reference vector of all polarisation.
Then we see that

ε+i (r) · ε+j (r) =
〈rr〉[ji]
〈ri〉〈rj〉

= 0

ε−i (r) · ε−j (r) =
〈ij〉[rr]
[2r][jr]

= 0

This has the following consequence:

Theorem 4.1. The scattering amplitude of gluons with all of either positive or negative
helicity vanishes at tree level for any number of external leg.

Proof. First observe that any contraction of polarisations or its complex conjugate or a
mix of the two, with same helicity vanishes (as reference vector is same by our choice).
Moreover every amplitude should not have any free Lorentz index (by Lorentz invari-
ance). Thus a polarisation can either contract to a polarisation or a momenta from
a vertex. Note that the 4-vertex does not contribute any momenta. Since the num-
ber of vertices is always less than external legs. So there is atleast one contraction of
polarisations. The proof is complete.

Theorem 4.2. Tree level amplitude of any number of gluons greater than 3 with all but
one positive helicity or all but one negative helicity vanishes at tree level.

Proof. Assume that all but one gluon has positive helicity. Let pµ1 be the momentum of
the negative helicity gluon. Choose the reference vector for pµi 6=1 polarisation to be pµ1 .
Then we still have

ε+i · ε†j = 0 ∀i, j 6= 1.
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Next, we have
ε+i (1) · ε−1 (r) =

[ir]〈11〉
[1i][1r]

= 0,

for any reference vector rµ for pµ1 polarisation. Thus all polarisation contractions vanish.
Thus we have our statement. The other case is similar.

This theorem does not work for three gluons because the reference vector rµ satisfies
r · pi 6= 0. But for r = p1, we have p1 · p3 = 1

2
(p1 + p3)

2 = 1
2
p22 = 0. Nevertheless the

restriction on the number of gluons in the previous theorem is not very important. For
real momenta, the amplitude for three gluon scattering is anyway trivial. To see this,
suppose pµi , i = 1, 2, 3 are the momentas of the three gluons, then we have p2i = 0; i =

1, 2, 3. At the vertex, we can assume that

pµ1 + pµ2 + pµ3 = 0

Thus pµ3 = (pµ1 + pµ2). This gives

0 = p23 = p21 + p22 + 2pµ1p2µ ⇒ pµ1p2µ = 0.

Similarly p2 · p3 = p1 · p3 = 0. Thus all contractions are trivial. We can now show that
p1, p2, p3 are collinear. Indeed, we can show that

pµ1 = αpµ3 , pµ2 = (1 + α)pµ3

for some α > 0. To see this, note that combining(
p0i
)2

=
(
p1i
)2

+
(
p2i
)2

+
(
p3i
)2
, i = 1, 2, 3

and pµi pjµ = 0 for i, j = 1, 2, 3 gives pµ1 = αpµ3 , p
µ
2 = βpµ3 . Momentum conservation gives

β = 1+α. Thus the three momentum are collinear and hence such an interaction is not
possible.

Remark 4.3. A more physical1 argument to show that three gluon scattering is trivial
is the following: let us go to the center of mass (COM) frame2. In COM, the momenta of
two massive incoming particle can be chosen to be pµ1 = (E1, 0, 0, p) , p

µ
2 = (E2, 0, 0,−p).

So pµ3 = (E1 + E2, 0, 0, 0). Thus pµ3 cannot be massless as it is at rest. If pµ1 and pµ2 are
massless then in COM frame pµ1 = −pµ2 . So pµ3 = 0 which again cannot be massless.

The following result follows using the parity symmetry of QCD.
1This argument was suggested by Raj Patil.
2This argument generalises to two massive, one massless scattering.
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Theorem 4.4. Amplitudes at tree level is invariant under parity, which flips helicities
hi −→ −hi.

Proof. Note that under parity, ~p −→ −~p, thus helicity flips. Now if the theory is parity
invariant, so is the scattering amplitude under ~p → −~p. Since QCD is parity invariant,
thus the amplitude is invariant under ~p −→ −~p. This amounts to the invariance under
helicity flip.

Remark 4.5. From above theorems, leading non vanishing amplitudes must have atleast
two negative or two positive helicities. Those with exactly two positive or negative
helicity are called maximum helicity violating (MHV) amplitudes.

4.1 Color Factors

Recall that {Tα}N
2−1

a=1 are the generators (in fundamental representation) of SU(N) and
the structure constants fabc are defined as[

T a, T b
]
= ifabcT c, (4.1)

where there is sum over repeated indices. Moreover the generators are normalised as

tr
(
T aT b

)
=

1

2
δab. (4.2)

Multiplying Eq. 4.1 by T c on the right, taking trace and using 4.2, we get

tr
([
T a, T b

]
T c
)
= ifabd tr

(
T dT c

)
=
i

2
fabdδcd.

Thus we have
fabc = −2i tr

([
T a, T b

]
T c
)
. (4.3)

We have the following identities for the generators :

Proposition 4.6. For arbitrary n× n complex matrices A and B, we have

(a) T a
ijT

a
k` =

1
2

(
δi`δkj − 1

N
δijδk`

)
.

(b) tr (T aA) tr (TaB) = 1
2

(
tr(AB)− 1

N
tr(A) tr(B)

)
.

(c) tr (AT aBTa) =
1
2

(
tr(A) tr(B)− 1

N
tr(AB)

)
.

Proof. (a) We begin by observing that any N ×N complex matrix M can be written as
a complex linear combination3 of the N ×N identity matrix and the T a

M =M01+MaT
a, M0,Ma ∈ C.

3If we take real linear combinations of T a then we get the Lie algebra su(N) of the Lie group
SU(N).
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Using the fact that tr(T a) = 0, we get

tr(M) =M0tr(1) + 0 =⇒ M0 =
1

N
tr(M).

Using Eq. 4.2, it easily follows that

Ma = 2 tr (MT a) .

This gives
M =

1

N
(tr(M))1+ 2 tr (MT a)T a.

Writing the above equation in matrix indices, we get

Mij =
1

N
Mkkδij + 2M`kT

a
k`T

a
ij

where there is a sum over repeated indices. Writing Mij = δjkδi`M`k, Mkk = δ`kM`k, we
get

δi`δjkM`k =

(
1

N
δijδk` + 2T a

ijT
a
k`

)
M`k.

Since M was arbitrary, we get

T a
ijT

a
k` =

1

2

(
δi`δkj −

1

N
δijδk`

)
.

(b) This follows upon contracting (a) with Aji and B`k.
(c) This follows by contracting with A`i and Bjk.

Using Proposition 4.6, we can manipulate the color factors that appear in the amplitudes.

Proposition 4.7. The following relations hold.

(a) tr(T aT a) = N2−1
2
, tr(T aT bT aT b) = 1−N2

4N
, tr(T aT bT cT d)tr(T aT bT cT d) = N4+2N2−3

16N2 ,

tr(T aT bT cT d)tr(T dT cT bT a) = N6−4N4+6N2−3
16N2 .

(b) fabef cde = tr
(
[T a, T b][T c, T d]

)
.

(c) (fabef cde)2 = N2(N2 − 1).

(d)
(
fabef cde

) (
facgf bdg

)
= 1

2
N2 (N2 − 1) .

Proof. (a) Take A = B = 1 in Proposition 4.6 (b) to get the first relations. Others are
also similar with added complication due to four factors.
(b) Using Eq. 4.3, we have

fabef cde = −4tr
([
T a, T b

]
T e
)
tr
([
T c, T d

]
T e
)

= −2

[
tr
([
T a, T b

] [
T c, T d

])
− 1

N
tr
([
T a, T b

])
tr
([
T c, T d

])]
= −2 tr

{[
T a, T b

] [
T c, T d

]}
,
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where we used Proposition 4.6 (b) in second step and the cyclic property of trace to get
rid of the second term in third step.
(c) We have

(fabef cde)2 = (fabef cde)(fabgf cdg)

= 4tr
([
T a, T b

] [
T c, T d

])
tr
([
T a, T b

] [
T c, T d

])
= 4

[
tr
(
T aT bT cT d − T aT bT dT c − T bT aT cT d + T bT aT dT c

)]
×[

tr
(
T aT bT cT d − T aT bT dT c − T bT aT cT d + T bT aT dT c

)]
.

Next we multiply out to get 16 terms of the form tr(T aT bT cT d)tr(T π(a)T π(b)T π(c)T π(d))

where π is a permutation of {a, b, c, d}. Using analogous result as in (a) and tedious
calculation gives

(fabef cde)2 = N2(N2 − 1).

(d) Similar to (c).

4.2 gg −→ gg scattering amplitude

In this subsection, we will see the full fledged application of spinor helicity formalism.
We will compute four gluon scattering amplitude mentioned in Subsection 1.1.

By Remark 4.5, since there are only four gluon, we know that only MHV amplitudes
contribute. We will compute M(1−2−3+4+) and other helicity combinations will be
related by crossing symmetry. Note that all momentas are incoming and hence physically
M (1−2−3+4+) corresponds to all neegative helicities. For ε1, ε2 we choose p4 as the
reference vector and for ε3, ε4 we choose p1 as the reference vector. We easily see that
with our choice of helicities

ε−1 (4) · ε−2 (4) = 0, ε+3 (1) · ε+4 (1) = 0

ε−1 (4) · ε+4 (1) =
〈11〉[44]
[14]〈14〉

= 0, ε−2 (4) · ε+3 (1) =
〈21〉[34]
[21]〈13〉

6= 0.
(4.4)

We can also check that

ε1 · p4 = ε2 · p4 = ε3 · p1 = ε4 · p1 = 0.

Also εi · pi = 0 is the gauge choice. Note that with our convention the Mandelstram
variables are as in Eq. 3.1. We will now compute the contribution of each of the four
Feynman diagram. We begin with the 4-vertex.

4-vertex: Since the 4-vertex does not contribute any momentum, thus only polarisa-
tions contract. Since only non-vanishing polarisation contraction is ε2 · ε3, thus 4-vertex
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amplitude is necessarily zero.

s-channel: The s-channel amplitude is

p2

p1

p3

p4

ε2, b

ε1, a

ε3, c

ε4, d

Figure 4: gg −→ gg : s-channel

iMs =
−ig2s
s

fabef cde [(ε1 · ε2) (p1 − p2)
µ + 2εµ2 (p2 · ε1)− 2εµ1 (p1 · ε2)]×

[(ε3 · ε4) (p3 − p4)
µ + 2εµ4 (p4 · ε3)− 2εµ3 (p3 · ε4)]

Note that polarisations of 3 and 4 are not complex conjugated because the momentas
are incoming. Thus for tour choice of helicities −−++ only one term survives (see Eq.
4.4). We get

Ms

(
1−2−3+4+

)
=

4g2s
s
fabef cde

(
ε−2 · ε+3

) (
p2 · ε−1

) (
p3 · ε+4

)
=

4g2s
s
fabef cde1

2

(
〈12〉[24]
[14]

)(
[43]〈31〉
〈14〉

)(
〈21〉[34]
[24]〈13〉

)
=

2g2s
〈12〉[21]

fabef cde 〈21〉[24][43]〈31〉〈21〉[34]
[14]〈14〉[24]〈13〉

= −2g2sf
abef cde 〈21〉[34]2

[21][14]〈41〉

= −2g2sf
abef cde 〈21〉[34]2

[21][23]〈32〉

where we used [14]〈41〉 = [23]〈32〉 which easily follows from (p1 + p4)
2 = (p2 + p3)

2.
Similarly (p1 + p2)

2 = (p3 + p4)
2 gives [21]〈12〉 = [34]〈43〉 and momentum conservation

gives 〈12〉[23] = −〈14〉[43] (see Remark 2.15). Using these we get
[34]

[21]
=

〈12〉
〈43〉

,
[34]

[23]
=

〈12〉
〈14〉

Thus we get

Ms

(
1−2−3+4+

)
= −2g2sf

abef cde 〈12〉2〈21〉
〈32〉〈43〉〈14〉

= −2g2sf
abcf cde 〈12〉4

〈12〉〈23〉〈34〉〈41〉
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This is a special case of the Taylor-Parke formula which we will discuss in the next
subsection.

t-channel: We get this by 2 ↔ 4 and b ↔ d crossing of the s-channel amplitude.

p3p2

p4p1

ε3, cε2, b

ε4, dε1, a

Figure 5: gg −→ gg : t-channel

The t-channel amplitude is

iMt =
−ig2s
t

fadef cbe [(ε1 · ε4) (p1 − p4)
µ + 2εµ4 (p4 · ε1)− 2εµ1 (p1 · ε4)]×

[(ε3, ε2) (p3 − p2)
µ + 2εµ2 (p2 · ε3)− 2εµ3 (p3 · ε2)] .

With our choice of helicities −−++, we see that this amplitude vanishes identically:

iMt

(
1−2−3+4+

)
= 0.

u-channel: We get this by 2 ↔ 3 and b ↔ c crossing of the s-channel amplitude. The
u-channel amplitude is

iMu =
−ig2s
u

facef bde× [(εi · ε3) (p1 − p3)
µ + 2εµ3 (p3 · ε1)− 2εµ1 (p1 · ε3)]×[

(ε3 · ε4) (p2 − p4)
µ + 2εµ4 (p4 · ε2)− 2ε42 (p2 · ε4)

]
.

For helicities −−++, we have

Mu

(
1−2−3+4+

)
=
g2s
u
facef bde4

(
ε+3 · ε−2

) (
p3 · ε−1

) (
p2 · ε+4

)
=

1

2

4g2s
〈31〉[34]

facef bde

(
〈21〉[34]
[24]〈13〉

)(
〈13〉[31]
[14]

)(
[42]〈21〉
〈14〉

)
= −2g2sf

acef bde 〈21〉2〈13〉[34]2[42]
〈13〉2[13][24][14]〈14〉

= 2g2sf
acef bde 〈21〉2[34]2

[13]〈13〉[14]〈14〉
.
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ε2, b

ε1, a ε4, d

ε3, c

p2

p4

p1

p3

Figure 6: gg −→ gg : u-channel

Now we use momentum conservation to get

〈12〉[23] = −〈14〉[43], 〈21〉[13] = −〈24〉[43]

Also (p1 + p4)
2 = (p2 + p3)

2 gives 〈14〉[41] = 〈23〉[32]. We thus have

Mu

(
1−2−3+4+

)
= 2g2sf

acef bde 〈21)2[34]2

[13]〈13〉[14]〈14〉

(
−〈12〉[23]
〈14〉[43]

)(
−〈21〉[13]
〈24〉[43]

)(
〈14〉[41]
〈23〉[32]

)
= −2g2sf

acef bde

(
〈21〉4

〈14〉〈42〉〈23〉〈31〉

)
.

We now compute the total amplitude. The total amplitude is

M = Ms +Mt +Mu +M4-vertex.

Thus

M
(
1−2−3+4+

)
= −2g2s

[
fabef cde

(
〈12〉4

〈12〉〈23〉〈34〉〈41〉

)
+ facef bde

(
〈21〉4

〈14〉〈42〉〈23〉〈31〉

)]
We need to find |M|2. There are three terms in the square. Let us simplify each term
separately. We have∣∣∣∣ 〈12〉4

〈12〉〈23〉〈34〉〈41〉

∣∣∣∣2 = ( 〈12〉4

〈12〉〈23〉〈34〉〈41〉

)(
〈12〉4

〈12〉〈23〉〈34〉〈41〉

)?

=
〈12〉4

〈12〉〈23〉〈34〉〈41〉
[21]4

[21][32][43][14]

=
(〈12〉[21])4

(〈12〉[21])(〈23〉[32])(〈34〉[43])(〈41〉[14])

=
s4

s2t2
=
s2

t2
.
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∣∣∣∣ 〈21〉4

〈14〉〈42〉〈23〉〈31〉

∣∣∣∣2 = 〈21〉4

〈14〉〈42〉〈23〉〈31〉
[12]4

[41][24][32][13]
=

s4

t2u2
,

〈12〉4

〈12〉〈23〉〈34〉〈41〉
[12]4

[41][24][32][13]
=

s3

t2u
.

Using Proposition 4.7 (c), (d), we get∑
polarisation

sum

|M
(
1−2−3+4+

)
|2 = 4g4sN

2
(
n2 − 1

){s2
t2

+
s4

t2u2
+

s3

t2u

}
,

= 4gusN
2
(
N2 − 1

)( s4

t2u2
+
s2(s+ u)

t2u

)
= 4g4sN

2
(
N2 − 1

)( s4

t2u2
− s2

ut

)
,

where we used s + t + u = 0. Other helicity combination is related to these by crossing
symmetry, for example M (1−2+3−4+) is given by M (1− 2−3+4+) with 2 ↔ 3 which
means s ↔ u. Thus the six non-vanishing amplitude correspond to six permutations of
s, t, u. Summing all of these gives∑

color sum
polarisation

sum

|M|2 = 4g4sN
2
(
N2 − 1

){( s4

t2u2
− s2

ut

)
+ (permutations ofs, t, u)

}

= 4g4sN
2
(
N2 − 1

){( s4

t2u2
− s2

tu

)
+

(
u4

t2s2
− u2

ts

)
+

(
s4

t2u2
− s2

tu

)
+(

t4

s2u2
− t2

su

)
+

(
t4

u2s2
− t2

us

)
+

(
u4

t2s2
− u2

ts

)}
= 4g4sN

2
(
N2 − 1

){
2

(
s4

t2u2
+

u4

t2s2
+

t4

s2u2

)
− 2

(
s2

tu
+
t2

su
+
u2

ts

)}
= 8g4sN

2
(
N2 − 1

){s6 + t6 + u6

s2t2u2
− s3 + t3 + u3

stu

}
= 8g4sN

2
(
N2 − 1

){(s3 + t3 + u3)
2 − 2 (s3t3 + u3t3 + s3u3)

(stu)2
− 3

}

= 8g4sN
2
(
N2 − 1

){
6− 2

(
st

u2
+
ut

s2
+
su

t2

)}
= 16g4sN

2
(
N2 − 1

){
3− st

u2
− ut

s2
− su

t2

}

where we used the fact that s+ t+u = 0 ⇒ s3+ t3+u3 = 3stu. Number of initial states
are 4× (N2 − 1)

2 which correspond to N2−1 number of color for each helicity and there
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are four such gluons. Averaging over them, we get

1

4(N2 − 1)2

∑
color sum

polarisation
sum

|M|2 = 16g4s
N2

4 (N2 − 1)

(
3− st

u2
− ut

s2
− su

t2

)
.

For QCD, plugging in N = 3 in above result gives the standard four gluon scattering
amplitude:

1

256

∑
polarisations

color

|M|2 = g4
9

2

[
3− tu

s2
− su

t2
− st

u2

]
.

4.3 Color Ordering and Taylor-Parke Formula

To simplify computations in YM theory, we separate the kinematic factors from colour
factors. We define the colour stripped amplitude to be the amplitude coming from the
same Feynman rules but without a factor of

√
2igsf

abc and we denote the color stripped
amplitude with a tilde. For example the colour stripped amplitude for gg → gg scattering
s-channel (ignoring helicity) is

M̃s(1234) =
1

2s
[(ε1 · ε2) (p1 − p2)

µ + 2εµ2 (p2 · ε1)− 2εµ1 (p1 · ε2)]×

[(ε3 · ε4) (p3 − p4)
µ + 2εµ4 (p4 · ε3)− 2εµ3 (p3 · ε4)]

We immediately have the following relations:

M̃s(1234) = −M̃s(2134) = −M̃s(1243) = M̃s(2143).

M̃s(1234) = M̃s(3412).
(4.5)

To take care of the color factor, we introduce the notation T a → 1, T b → 2, T c → 3, T d →
4. With this notation, the color factor in s-channel diagram is

f 12af 34a = −2 tr{[1, 2][3, 4]}
= −2 tr{1234− 2134− 1243 + 2143}.

So the amplitude for s-channel can be written as:

Ms(1234) = −2g2s(−2)tr{1234− 2134− 1243 + 2143}M̃s(1234)

= 4g2s

[
tr{1234}M̃s(1234)− tr{2134}M̃s(1234)−

tr{1243}M̃s(1234) + tr{2143}M̃s(1234)
]

= 4g2s

[
tr{1234}M̃s(1234) + tr{2134}M̃s(2134)+

tr{1243}M̃s(1243) + tr{2143}M̃s(2143)
]
,
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where we used Eq. 4.5. The t-channel and u-channel amplitude can be gotten by
crossings of s-channel. For example, t-channel is 2 ↔ 4 exchange of s-channel and u

-channel is 2 ↔ 3 exchange in s-channel. That is

M̃t(1234) = M̃s(1432) (second-fourth slot exchange),
M̃u(1234) = M̃s(1324) (second-third slot exchange).

(4.6)

Since the 4-vertex vanishes, the full amplitude is thus

M(1234) = Ms(1234) +Mt(1234) +Mu(1234)

which has 12 terms, four each for s, t, u channels. Using the cyclic property of trace and
the crossing relations between the s, t, u channel, all of the 12 terms can be written as
tr{ijk`}M̃s(ijkl) with appropriate summation. Indeed the following is true:

Proposition 4.8. The four gluon amplitude (with helicities suppressed) can be written
as a single trace sum:

M(1234) = 4g2s
∑
σ∈S3

tr{1σ(2)σ(3)σ(4)}M̃(1σ(2)σ(3)σ(4))

where M̃(ijkl) = M̃s(ijk`) + M̃t(ijkl) is called the color-ordered partial amplitude.

Proof. From calculations in previous subsection, we have

Mt(1234) = −2ig2sf
14ef 32eM̃t(1234)

= −2g2s(−2)tr ([1, 4][3, 2])M̃t(1234)

= 4g2str{1432− 4132− 1423 + 4123}M̃s(1432)

= 4g2s

[
tr{1432}M̃s(1432) + tr{4132}M̃s(4132)+

tr{1423}M̃s(1423) + tr{4123}M̃s(4123)
]
,

where we used Proposition 4.7 (b) (second step), Eq. (4.6) (third step) and Eq. (4.5)
(fourth step). Similarly we have

Mu(1234) = 4g2s

[
tr{1324}M̃s(1324) + tr{3124}M̃s(3124)+

tr{1342}M̃s(1342) + tr{3142}M̃s(3142)
]
.
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Thus the three amplitudes are:

Ms(1234) = 4g2s

[
tr{1234}M̃s(1234) + tr{2134}M̃s(2134)

+tr{1243}M̃s(1243) + tr{2143}M̃s(2143)
]
,

Mt(1234) = 4g2s

[
tr{1432}M̃s(1432) + tr{4132}M̃s(4132)

+tr{1423}M̃s(1423) + tr{4123}M̃s(4123)
]
,

Mu(1234) = 4g2s

[
tr{1324}M̃s(1324) + tr{3124}M̃s(3124)

+tr{1342}M̃s(1342) + tr{3142}M̃s(3142)
]
.

Collecting the same color terms above and using cyclic property of trace along with Eq.
(4.5), we get

M(1234) = Ms(1234) +Mt(1234) +Mu(1234)

= 4g2s

[
tr{1234}

(
M̃s(1234) + M̃s(1432)

)
+ tr{1342}

(
M̃s(1243) + M̃s(1342)

)
+ tr{1243}

(
M̃s(1243) + M̃s(1342)

)
+ tr{1432}

(
M̃s(1234) + M̃s(1432)

)
+tr{1324}

(
M̃s(1423) + M̃s(1324)

)
+ tr{1423}

(
M̃s(1423) + M̃s(1324)

)]
.

Using the crossing in Eq. (4.6), we have

M(1234) = 4g2s

[
tr{1234}

(
M̃s(1234) + M̃t(1234)

)
+ tr{1342}

(
M̃t(1342) + M̃s(1342)

)
+ tr{1243}

(
M̃s(1243) + M̃t(1243)

)
+ tr{1432}

(
M̃t(1432) + M̃s(1432)

)
+tr{1324}

(
M̃s(1324) + M̃t(1324)

)
+ tr{1423}

(
M̃s(1423) + M̃t(1423)

)]
= 4g2s

[
tr{1234}M̃(1234) + tr{1342}M̃(1342) + tr{1243}M̃(1243)

+ tr{1432}M̃(1432) + tr{1324}M̃(1324) +tr{1423}M̃(1423)
]

= 4g2s
∑
σ∈S3

tr{1σ(2)σ(3)σ(4)}M̃(1σ(2)σ(3)σ(4)).

Remark 4.9. The partial color-ordered amplitude M̃(ijkl) is the sum over the am-
plitude coming only from the planer Feynman diagram. Intuitively, planer Feynman
diagrams are those in which the legs are uncrossed. For example, the s, t channel dia-
grams are planer while the u channel diagram is non planer.

The above formula for 4-gluon scattering generalises easily to n-gluon scattering. We
will state the result without proof and refer to [5, Subsection 2.2.2] for proof and detailed
discussion.
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Theorem 4.10. The n-gluon amplitude (with helicities suppressed) can be written as a
single trace sum:

M(12 · · ·n) = −2
(√

2igs

)n−2 ∑
σ∈Sn−1

tr{1σ(2) . . . σ(n)}M̃(1σ(2) . . . σ(n))

where M̃(12 . . . n) is the sum over all planer diagrams.

For MHV amplitudes, the color-ordered partial amplitude is given by (see Theorem ??
for proof)

M̃
(
1+2+ . . . i− . . . j− . . . n+

)
=

〈ij〉4

〈12〉〈23〉〈34〉 · · · 〈n− 1n〉〈n1〉
.

This is called the Taylor-Parke formula. We will prove it in next subsection using the
BCFW recursion relation.

4.4 Complex Momenta and BCFW Recursion Relation

We will now take our momentums to be complex. With this leap, the advantage is that
we can invoke complex analysis to study amplitudes and get the analytic continuations.
We can finally take real momentum limit to get the physical amplitude. This trick is used
to derive powerful recursion relations called the Britto-Feng-Cachazo-Witten (BCFW)
recursion relations.

4.4.1 3-gluon Amplitude

Let us begin with the three point amplitude. We will write the most general three gluon
amplitude without Feynman rules using only the symmetries of the theory.4 We begin
by proving a constraint on the 3-gluon amplitude.

Proposition 4.11. The 3-gluon amplitude with complex momenta has kinematic factor
in terms of either the angular bracket of spinor contraction or the square bracket of spinor
contraction coming from the momentas.

Proof. The three gluon amplitude must depend on polarisation vectors εi and momenta
pi, or the spinors [1|, [2|, [3| and 〈1, 〈2|, 〈3|. Momentum conservation gives

3∑
i=1

|i〉[i| = 0.

4This is called the bottom-up construction. A whole field of S-matrix bootstrap based on this
approach is an active field of research.
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b, ν

c, ρ

a, µ

Figure 7: 3-gluon Feynman diagram

Contracting with 〈1| or 〈2| gives

〈12〉[2| = −〈13〉[3|, 〈21〉[1| = −〈23〉[3|.

Now since we have three 2 component spinors, all of them cannot be linearly independent.
If |1] and |2] are proportional then above equation says that |1], |2] and |3] are propor-
tional. Only two cases can occur, either 〈12〉 = 0 which in turn implies 〈23〉 = 〈31〉 = 0,
or that all |i] are proportional to each other, in which case [12] = [23] = [31] = 0. So
either all angle brackets vanish or all square brackets vanish. Thus the answer must only
be in terms of angles or squares.

Remark 4.12. In the real momenta limit, 〈ij〉? = [ji] (which is not true for complex mo-
menta), so all inner products vanish and hence we have no nontrivial 3-gluon amplitude
for real momenta (which we already concluded in Remark 4.3).

The most general 3-gluon amplitude is recorded in the following theorem:

Theorem 4.13. In a renormalizable theory of massless spin 1 particles (gluons), the
most general 3-gluon amplitude with complex momenta has the following forms:

M
(
1+2+3+

)
= 0, M

(
1+2+3−

)
= Cabc [12]3

[13][32]
, M

(
1−2−3+

)
= Cabc 〈12〉3

〈13〉〈32〉
.

Before we begin to prove this theorem, we need the following proposition on the mass
dimension of amplitudes:

Proposition 4.14. The mass dimension of an n-particle scattering amplitude M(pi, σi, ai)
5

5pi, σi, ai corresponding to a massive (massless) particle denotes the momentum, spin (helicity)
and other internal indices respectively of the particle.
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is
[M] = 4− n.

Proof. Recall that the scattering amplitude is related to the S-matrix by

Sfi = i(2π)4δ(4)

(
N∑
i=1

pi

)
M (pi, σi, ai) , (4.7)

where Sfi is the scattering matrix of m (m < n) incoming particles and n−m outgoing
particles:

Sfi = 〈in p1, . . . , pm| pm+1, . . . , pn out〉 .

The incoming and outgoing states are made of single particle states |pi, σi, ai〉 created
from vacuum by creation operator

|p, σ, a〉 =
√

2Epa
† σ,a
p |0〉,

and are normalised as

〈p, σ, a|p′, σ′, a′〉 = 2Ep(2π)
3δσ′σδa′aδ

(3)(p′ − p).

Now observe that the mass dimension of the (one dimensional) Dirac delta function is
the inverse of the dimension of its argument. To see this, note that for dimensionless x,
we have

δ(ax) =
δ(x)

|a|
=⇒ |a| = [δ(ax)] = [a]−1 = [ax]−1.

Since [Ep] = [
√

p2 +m2] = 1, and [δ(3)(p′−p)] = [δ(p′x− px)]
3, thus the mass dimension

of 〈p, σ, a|p′, σ′, a′〉 is −3 + 1 = −2. Hence

[|p, σ, a〉] = [〈p, σ, a|] = −1.

Thus we have [Sfi] = −n. Plugging this into Eq. (4.7)

−n = −4 + [M] =⇒ [M] = 4− n.

Proof of Theorem 4.13. By Proposition 4.11, we know that the answer must only be in
terms of either angular product or square product. Next we invoke little group rescaling
to get the most general 3-gluon amplitude with complex momenta. Let us make a choice
of helicities. We take 1+2+3+. By Remark 2.19, the total power of [1| minus the power
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of 〈1| should be 2, for 1− it must be −2. For all other momenta, same rule holds. Hence
under the above constraints for +++, the most general amplitude is

M
(
1+2+3+

)
= Cabc[12][23][31] or Cabc 1

〈12〉〈23〉〈31〉

where Cabc is some color structure. Since in the limit of real momenta, the amplitude
must vanish, therefore the first form is the only possibility as the second form is in-
compatible with this limit (as it diverges due to vanishing of the angle brackets). Since
M(123) has mass dimension 1 (Proposition 4.14) and [12][23][31] has mass dimension
3 (since [|i〉, 〈i|] = [|i], [i|] = 1/2 which is easy to see from 1 = [p][|p〉[p|]) , Cabc must
have dimension −2. Thus, if we consider only renormalizable theories with dimensionless
couplings, the only solution is Cabc = 0. For helicities ++− and −−+, there are only
two possibilities consistent with little group scaling. Since 〈12〉〈23〉〈31〉

〈12〉4 diverges in the limit
of real momenta, the only possibility is

M
(
1+2+3−

)
= Cabc [12]3

[13][32]

Similarly,

M
(
1−2−3+

)
= Cabc 〈12〉3

〈13〉〈32〉
.

�

4.4.2 BCFW Recursion Relations

The key idea of BCFW recursion relation is to relate the n-gluon amplitude with the
amplitude of lesser number of gluons. This is achieved by introducing a complex variable
in the momenta and then using Cauchy’s residue theorem to get the physical amplitude.
We now systematically describe the method.

Let z be a complex variable. Let us shift the spinors of gluons with momenta pi and pj

in the following way:

[̂i| = [i|+ z[j|, |ĵ〉 = |j〉 − z|i〉, |̂i〉 = |i〉, [ĵ| = [j|.

Then the shifted momenta is

p̂i = |i〉[i|+ z|i〉[j|, p̂j = |j〉[j| − z|i〉[j|.

It is easy to see that the shifted momentas are still massless and satisfy the momentum
conservation. Let M(z) be the amplitude with shifted momenta. Then the physical
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amplitude is obviously M(0). Consider the following integral:

I =
1

2πi

∮
C
dz

M(z)

z
,

where the contour C is

C = lim
R→∞

CR, CR =
{
z ∈ C | z = Reiθ, 0 ≤ θ < 2π

}
.

By Cauchy’s residue theorem, we have

I =
∑

poles zα

Resz=zα

(
M(z)

z

)
.

It is easy to see that z = 0 is a pole with residue M(0). Thus we have

I = M(0) +
∑
poles
zα 6=0

Resz=zα

(
M(z)

z

)
.

We have the following theorem:

Theorem 4.15. Suppose M(z) −→ 0 as |z| −→ ∞. Then

I =
1

2πi

∮
C
dz

M(z)

z
= 0.

Proof. We begin by observing that

I = lim
R→∞

1

2πi

∮
CR

dz
M(z)

z
.

Now consider the function
f(z) = M(1/z).

Since M(z) is meromorphic, there exists a neighbourhood U of z = 0 such that f : U −→
C is holomorphic. Moreover f(0) = 0 by assumption. Then by [2, Theorem 1.1. Page
73], there exists a neighbourhood r0 > 0, a unique integer n > 0 and a nonvanishing
holomorphic function6 g : Dr0 −→ C such that

f(z) = zng(z) =⇒ M(z) = z−ng(1/z),

6Actually [2, Theorem 1.1. Page 73] only gives a neighbourhood V ⊂ U of 0 on which g is holo-
morphic, but we cal always choose r0 small enough such that g is holomorphic on Dr0 .
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where Dr0 = {z ∈ C | |z| ≤ r0}. Since g is holomorphic on Dr0 , it is in particular
continuous. Since Dr0 is compact, by extreme value theorem [3, Theorem 27.4], we have

sup
z∈Dr0

|g(z)| <∞.

This readily implies that
lim
R→∞

sup
z∈CR

|g(1/z)| <∞.

Thus we get

lim
R→∞

∣∣∣∣ 1

2πi

∮
CR

dz
M(z)

z

∣∣∣∣ = lim
R→∞

1

2π

∣∣∣∣∫ 2π

0

dθ(Reiθ)
g(R−1e−iθ)

Rn+1ei(n+1)θ

∣∣∣∣
≤ lim

R→∞

supz∈CR |g(1/z)|
2πRn

∫ 2π

0

dθdz

= 0.

The conclusion now follows.

Assuming that M(z) −→ 0 as |z| −→ ∞, Theorem 4.15 implies that the physical
amplitude is given by sum over residues of M(z) :

M(0) = −
∑
poles
zα 6=0

Resz=zα

(
M(z)

z

)
. (4.8)

We will analyse this falloff condition of the amplitude at last and show that it is not
such a restrictive requirement. Let us now analyze the pole structure of M(z). We can
easily see that the only pole contribution in the amplitude comes from the propagators
connecting vertices which are in turn connected to the legs i and j. Let this propagator
have momentum P̂ (z). Thus the pole is at z for which P̂ (z)2 = 0. Thus we can split the
Feynman diagram as shown in Figure 8. We label the gluons from 1 to n with gluons
a, a+1, . . . , b lying on the right of P̂ and the remaining gluons to the left of P̂ . Note that
the propagator momentum P̂ (z) is independent of z if the gluons i, j lie on the same side
of the propagator. This is because the momentum P̂ (z) is the sum of the momentas of
gluons a to b. So we always take i and j to be on opposite sides of the propagator. The
bispinor corresponding to P̂ (z), which we also denote with P̂ (z) without spinor indices
is

P̂ (z) =
b∑

k=a

|k〉[k| − z|i〉[j|.

So P̂ 2(za,b) = 0 implies

(pa + · · ·+ pb)
2 − za,b

b∑
k=a

〈ik〉[kj] + (za,b)
2

2
〈ii〉[jj] = 0,
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b+ 1

n

1

i a− 1 a

b

j

P̂ (z)

Figure 8: Partition of Feynman diagram across propagator with momentum P̂ (z)

which gives

za,b =
(pa + · · ·+ pb)

2

〈ia〉[aj] + · · ·+ 〈ib〉[bj]
(4.9)

where we used the fact that [ii] = 〈ii〉 = 0. Thus for each such partition of the diagram
by a, b, we will get a pole at za,b. The residue at za,b can easily be calculated:

− 1

za,b
Resz=za,b

(
M1(z)

1

(pa + · · ·+ pb)
2 − z

∑
〈ik〉[kj]

M2(z)

)
= M1 (za,b)

1

(pa + · · ·+ pb)
2M2 (za,b) ,

where M1 and M2 are the amplitudes of the left and right side in the partition of the
diagram. Substituting this in Eq. (4.8), we get

M(1 . . . n) =
∑
a,b,h

M(1, . . . , a −1, b+ 1, . . . , n→ P̂ h
)

× 1

(pa + · · ·+ pb)
2M

(
P̂−h → a, . . . , b

)
,

(4.10)

where h denotes the helicity of the virtual particle in the propagator which we need
to sum over. Note that the helicities of P̂ is opposite on the two subdiagram due to
opposite direction of the momenta relative to the two subdiagrams. This is the Britto-
Feng-Cachazo-Witten (BCFW) recursion relation.

Let us now turn to the falloff condition of the amplitude. With the shift in momentas,
the corresponding polarisations of gluons i and j with respective reference vectors pj and
pi is easily checked to be

ε−
î
(j) = ε−i (j), ε+

î
(j) = ε+i (j) + z

√
2
|j〉[j|
〈ji〉

ε−
ĵ
(i) = ε−j (i)− z

√
2
|i〉[i|
[ji]

, ε+
ĵ
(i) = ε+j (i).
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This is easy to see from the form of polarisation vectors given in Lemma 2.17. Let us
write qµ = [|i〉[j|]µ. Then it is easily checked that

q?µ = |j〉[i| =⇒ pi,j · q = pi,j · q? = 0. (4.11)

Then the shifted momentas are

p̂µi = pµi + zqµ, p̂µj = pµj − zqµ, (4.12)

and the polarisations are

ε−µ

î
=

√
2qµ

[ij]
, ε+µ

î
=

√
2(q?µ + zpµj )

〈ji〉

ε−µ

ĵ
=

√
2(q?µ − zpµi )

[ji]
, ε+µ

ĵ
=

√
2qµ

〈ij〉
.

(4.13)

Now it was argued by Arkani-Hamed and Kaplan in [4] that the general form of the
amplitude M(z) is

M(z) = εµ
î
Mµν(z)ε

ν
ĵ
,

where
Mµν(z) =

(
c1z + c0 + c−1z

−1 + · · ·
)
gµν + Aµν +Bµνz

−1 + · · · ,

where Aµν is antisymmetric and the dots indicate terms of the order of z−2. Before we
delve into the falloff analysis, it is useful to see what the Ward identity gives. The Ward
identity is given by

p̂µi Mµν(z)ε
ν
ĵ
= 0 =⇒ qµMµν(z)ε

ν
ĵ
= −1

z
pµi Mµν(z)ε

ν
ĵ
, (4.14)

where we used Eq. (4.12). Similarly, the Ward identity for momenta p̂j gives

εµ
ĵ
Mµν(z)q

ν =
1

z
εµ
ĵ
Mµν(z)p

ν
j

It is obvious that the falloff condition of the amplitude M(z) heavily depends on the
helicities (hi, hj) of i and j. We separate the analysis in various cases.

(i) (hi, hj) = (−,+).
Using Eq. (4.13), the amplitude is

M(z)−+ = ε−µ

î
(j)
[(
c1z + c0 + c−1z

−1 + · · ·
)
gµν + Aµν +Bµνz

−1 + · · ·
]
ε+ν

ĵ
(i)

=
2

〈ij〉[ij]
qµ
[(
c1z + c0 + c−1z

−1 + · · ·
)
gµν + Aµν +Bµνz

−1 + · · ·
]
qν

=
2

z〈ij〉[ji]
pµi
[(
c1z + c0 + c−1z

−1 + · · ·
)
gµν + Aµν +Bµνz

−1 + · · ·
]
qν ,
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where we used Eq. (4.14). Using Eq. (4.11), we get

M(z)−+ = −1

z

(
2

pi · pj
pµi Aµνq

ν

)
+O(z−2) −→ 1

z
.

(ii) (hi, hj) = (−,−).
By similar computation as above, we get

M(z)−− = ε−µ

î
(j)Mµν(z)ε

−ν

ĵ
(i)

= − 2

z[ji][ij]
pµi
[
(c1z + · · · ) gµν + Aµν +Bµνz

−1 + · · ·
]
(q? − zpi)

ν

= − 2

z[ji][ij]

[
pµi Aµν (q

? − zpi)
ν − pµi Bµνz

−1 (q? − zpi)
ν + · · ·

]
=

1

z

(
2pµi Aµνq

?ν + 2pµi Bµνp
ν
i +O (z−2)

[ij]2

)
−→ 1

z
,

where we used the antisymmetry of Aµν and p2i = 0.

(iii) (hi, hj) = (+,+).
This case is similar to (ii) if we use the Ward identity for p̂j. We get

M(z)++ = ε+µ

î
(j)Mµν(z)ε

+ν

ĵ
(i)

= − 2

z〈ji〉〈ij〉
(q? + zpj)

µ
[
(c1z + · · · ) gµν + Aµν +Bµνz

−1 + · · ·
]
pνj

=
2

z〈ji〉2
[
(q? + zpj)

µAµνp
ν
j − (q? + zpj)

µBµνz
−1pνj + · · ·

]
=

1

z

(
2(q? + zpj)

µAµνpjν + 2(q? + zpj)
µBµνp

ν
j +O (z−2)

〈ij〉2

)
−→ 1

z
,

(iv) (hi, hj) = (+,−).
We have

M(z)+− = ε+µ

î
M(z)µνε

−ν

ĵ

=
2 (q? + zpj)

µ

〈ji〉
[
(c1z + · · · ) gµν + Aµν +Bµνz

−1 + · · ·
] 2 (q? − zpi)

ν

[ji]

= c1z
3 +O

(
z2
)
−→ z3.

Thus in this case, we cannot use the BCFW recursion relation with the assumned
momentum shift. An easy way out is to reverse the shifting. That is we use the
shifts in Eq. (4.12) with i and j reversed and we get back to case (i).

As it was remarked earlier, the falloff condition is not that restrictive.
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4.4.3 Example

Let us work out the four gluon partial amplitude for the helicity combination − − ++

i,e, M̃(1−2−3+4+). We have already done this computation using Feynman rules. Let
us now do this using the BCFW relation. There are two diagrams contributing to this
amplitude – the s, t-channel. We choose i = 1, j = 4 which is (−,+) combination and
hence the falloff condition necessary for BCFW is satisfied. First observe that first and
fourth gluon must be on opposite sides of the propagator to get a pole. This immediately
rules out the t-channel. Thus t-channel does not contribute. Moreover, there is only one
partition of the s-channel diagram corresponding to a = 3, b = 4 as shown below. The

z4,3 z4,3

2,−

1̂,−

3,+

4̂,+

p2

P̂ (z)

p3

p̂1 p̂4

Figure 9: s-channel partition for BCFW

propagator momenta is P̂ (z) = −p̂1 − p2 and using Eq. (4.9), the pole is at

z4,3 =
s

〈13〉[34] + 〈14〉[44]
=

〈34〉
〈31〉

.

By BCFW, we have

M̃
(
1−2−3+4+

)
=
∑
h

M̃
(
1̂−2−P̂ h

) 1

〈12〉[21]
M̃
(
[−P̂−h]3+4̂+

)
,

where
[1̂| = [1|+ z4,3[4| and |4̂〉 = |4〉 − z4,3|1〉.

We see that M̃
(
1̂−2−P̂−

)
= 0 by Theorem 4.13. Thus we must choose h = +. Again

making use of Theorem 4.13, we get

M̃
(
1−2−3+4+

)
= − 〈1̂2〉3

〈1̂P̂ 〉〈P̂2〉
1

〈12〉[21]
[34̂]3

[3P̂ ][P̂ 4̂]
.

Using the fact that P̂ (z) = p̂4 + p3, we get

|P̂ 〉[P̂ | = |4̂〉[4̂|+ |3〉[3|
= (|4〉 − z4,3|1〉) [4|+ |3〉[3|

= |4〉[4| − 〈34〉
〈31〉

|1〉[4|+ |3〉[3|.
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This gives

〈1̂P̂ 〉[P̂3] = 〈1P̂ 〉[P̂3]
= 〈14〉[43].

Similarly
〈2P̂ 〉[P̂4] = 〈23〉[34].

Thus we get

M̃
(
1−2−3+4+

)
= − 〈12〉3[34]3

〈14〉[43]〈23〉[34]〈12〉[21]

=
〈12〉3[34]

〈14〉〈23〉〈12〉[21]
.

By momentum conservation, we have 〈43〉[34] = 〈12〉[21], which gives

[34]

[21]
=

〈12〉
〈43〉

.

Using this, we get

M̃
(
1−2−3+4+

)
=

〈12〉3〈12〉
〈14〉〈23〉〈12〉〈43〉

=
〈12〉4

〈12〉〈23〉〈34〉〈41〉
.

This agrees with our previous calculation.

4.5 Taylor-Parke Formula

We will give an inductive proof of the Taylor-Parke formula using BCFW recursion
relation.

Theorem 4.16. The n-gluon MHV amplitude is given by

M̃
(
1+2+ . . . i− . . . j− . . . n+

)
=

〈ij〉4

〈12〉〈23〉〈34〉 · · · 〈n− 1n〉〈n1〉
.

Proof. For n = 4, we have already proved the result in Subsection 4.2. We assume that
the formula is true for all m < n and we will prove it for n gluons. Since there are only two
− helicities, thus we can always renumber the gluons so that the amplitude we need to
compute is M̃ (1− . . . k− . . . n+) and all dots are positive helicity gluons. We choose i = 1

and j = n in BCFW which is (−,+) combination and hence appropriate. By Theorem
4.1 and Theorem 4.2, we see that the subamplitudes in BCFW are nonvanishing only
for one partition which is shown below. We have

49



z̃ z̃

n− 2,+

k,−

1̂,−

n+ 1,+

n̂,+

P̂ (z)

Figure 10: Partition of amplitude for MHV amplitudes

z̃ = zn,n−1 =
〈(n− 1)n〉
〈(n− 1)1〉

.

By BCFW, we get

M̃
(
1− . . . k− . . . n+

)
= M̃

(
1− . . . k− . . . (n− 2)+P̂ h

) 1

〈n(n− 1)〉[(n− 1)n]

× M̃
(
[−P̂−h](n− 1)+n+

)
=

〈1̂k〉4

〈1̂2〉 · · · 〈(n− 2)P̂ 〉〈P̂1〉
1

〈n(n− 1)〉[(n− 1)n]

−[(n− 1)n̂]3

[n̂P̂ ][P̂ (n− 1)]

=
〈1k〉4

〈12〉 · · · 〈(n− 2)P̂ 〉〈P̂1〉
1

〈n(n− 1)〉[(n− 1)n]

−[(n− 1)n]3

[nP̂ ][P̂ (n− 1)]
,

where we used Theorem 4.13 to conclude that only nonvanishing contribution comes
from h = + and then used the induction hypothesis and again Theorem 4.13. Since
P̂ = p̂n + pn−1, we have

|P̂ 〉[P̂ | = |n̂〉[n̂|+ |n− 1〉[n− 1|
= (|n〉 − zn,n−1|1〉) [n|+ |n− 1〉[n− 1|

= |n〉[n| − 〈(n− 1)n〉
〈(n− 1)1〉

|1〉[n|+ |n− 1〉[n− 1|.

Thus we have
〈(n− 2)P̂ 〉[P̂ n] = 〈(n− 2)(n− 1)〉[(n− 1)n],

〈1P̂ 〉[P̂ (n− 1)] = 〈1n〉[n(n− 1)].

Using this, we get

M̃
(
1− . . . k− . . . n+

)
= − 〈1k〉4[(n− 1)n]3

〈12〉 · · · 〈n(n− 1)〉[(n− 1)n]〈(n− 2)(n− 1)〉[(n− 1)n]〈1n〉[n(n− 1)]

=
〈1k〉4

〈12〉 · · · 〈(n− 2)(n− 1)〉〈(n− 1)n〉〈n1〉
,

50



which is what we wanted to prove.
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