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Chapter 1

The Free Relativistic Particle

In this chapter, we describe the various methods of quantising a free particle. The discussion
is based on the video lectures of Shiraz Minwalla [7]. Let RYP~! denote the D—dimensional
spacetime. We denote a typical vector X* € RVP~! by

X# = (X9 X7

where (X7) € RP~1. We sometimes write X# = (X°, X). Our signature for the Minkowski
space is
N = diag(—1,1,...,1).

We use natural units A = ¢ = 1. Consider a free particle moving in D—dimensional spacetime.
We want to describe its dynamics. We want our theory to be relativistic, meaning that the
theory that we develop must be invariant under Lorentz transformation.

1.1 The Action of a Free Relativistic Particle

We begin by writing down a Lorentz invariant action for the free particle. The most natural
choice for a Lorentz invariant action is choosing a Lorentz scalar and the cannonical choice
is to chose the length of the world line traced by the particle in spacetime. Put

S:/dtL:—m/dtw—X'“a ont,f:%, (1.1.1)

where m is a parameter which we will identify with the mass of the particle. We can now
compute the conjugate momentum of the system in the usual way. We have

(55 B —m/( 2Xz

—2\/1—X2 \/l—X2

Pi




The Hamiltonian of the system is given by

. ;‘2 .
HeP. X—f—_"% o oi—xe—_™

V1— X2 V1— X

which we recognise as the usual relativistic energy of a free particle and hence m is identified
as the mass of the particle. Note that the action is not manifestly Lorentz invariant as
we are treating the first component of the spacetime vector differently from the remaining
components. But we want an action which is manifestly Lorentz invariant. One way to
obtain such an action is to promote ¢ to be an independent variable and then parametrize
the spacetime coordinates by some other parameter say 7. So put t = X° and parametrize
XH = (X0 X7) as
XH = XH"(1).

By a simple application of chain rule, we have

dx®°
dt = —dr.
dr T

The action can then be written as
2 =2\ 2 2 2 =2\ 2
g /d dX0 dX dX0 B /d dX0 n dX
N ar dt ar )~ ") dr dr
[ dXPrdX
= — dry/| — =
m / T dr dr

Remark 1.1.1. It seems that we have added a new degree of freedom to our system, namely
XY Later we will see that this is not the case as our system will have reparametrization in-
variance also called diffeomorphism invariance which will make one of the degree of freedom
redundant.

It is now clear that S can be interpreted as the length of the worldline it traces in spacetime.

1.2 Symmetries of the Action

Let us now look at the symmetries of our system:

1.2.1 Poincaré invariance

This is a manifest global symmetry of the system.
Xt — XM= AL XY+ €8 A, €SO(1,D —1),6" e RM,

8



where SO(1, D — 1) denotes the Lorentz group. We have

dXrdX, dX* dX" dxe  , dX° dX? dX° dX? dX°
o e A A B (A A = Dy
dr dr g dr M ™ gy dr ( ol ”) dr dr " dr dr
_dXtdX,
Codr dr’
where we used the property of Lorentz transformations
ATnA = 1. (1.2.1)

This implies that

= | dXrdX, dXrdX,
S__m/dT Cdr dr __m/dT S dr dr

We could have directly concluded this by the fact that the action is the length of a curve
and hence a Lorentz scalar. So it does not transform under Lorentz transformations.

1.2.2 Diffeomorphism Invariance
We can reparametrize the world line by changing the parameter 7:
T—T="17(T).

where 7(7) is a monotonic functionﬂ of 7. The integration measure changes according to the
usual change of variable rule. Next under reparametrization we have

XH(7(r)) = X" (7).

Hence we see that the transformed action is

_|dr dX“dX
S——m/dT% T (E) ——m/dT

This is a local symmetry of the theory - a gauge symmetry as it depends on the the local
coordinates of the spacetime. It is also a continuous symmetry of the action. As is well know,
gauge symmetries are not really symmetries in the sense that we do not have an associated
conserved charge, rather it is a redundancy in the description of the theory which we need
to fix when we go to quantum theory by a process called gauge fixing. We now return to the

dr dT
47 dr

_d)?ud)?uig
& dr

!monotonicity is a techinical requirement for reparametrization. Basically what we need is that as we
increase 7, we should traverse the worldline in one given direction and not flip between positions. Generally,
T is assumed to be increasing so that we travel the worldline in the same direction as in the original
parametrization.



resolution of Remark Since the time component of spacetime vector is monotonically
increasing, we can reparametrize the worldline in such a way that

T=X%r) =t
Fixing the redundancy of the system we get back to our original action. This shows that

we have not increased the number of degrees of freedom of the theory by introducing a
parameter.

1.3 Quantisation

We will now try to quantise the system. We will illustrate four different methods of quanti-
sation, each with its own advantage. This will help us when we go to the string action.

1.3.1 First Method

We quantise our original action in ({I.1.1)) directly using the Dirac prescription. The conjugate
momentum and the Hamiltonian was calculated to be

po_mX g
V11— X2 V1— X2

where the dot represents derivative with respect to t. We promote the fields to operators
with the standard substitution P’ = —id; where 9; = % and introduce the wavefunction
which satisfies the Schrodinger equation with the above Hamiltonian. Let ¢(t, X*) be the

wavefunction. Then the Schroédinger equation is given by

0

— = H¢.
or = Ho
This implies that
D¢
——L = H?%.
ot? ¢
Next, one can easily check that .
H? = P* + m?.
Thus the Schroodinger equation becomes
0?¢
oz (=07 +m?)¢
which implies
(0,0" —m*)¢p = 0. (1.3.1)

We can now solve (|1.3.1)) and get all the quantum dynamics of the system.

Remark 1.3.1. We can recognise with the Klein-Gordan equation in field theory.
There is one crucial difference in our case and the field theory Klein-Gordan equation. In
field theory we quantise quantum fields while in our case (relativistic quantum mechanics),
we quantise wavefunctions.

10



1.3.2 Second Method

We will now denote the 7 derivative by dot. That is

. dxH
Xt = .
dr
Momentum conjugate to X* is
pu— 05 mXT
OXH  J_XuX,
One easily sees that
PP, +m?* = 0. (1.3.2)

Eq. is a constraint. Note that we have not yet appealed to the equation of motion of
the action to derive Eq. (1.3.1)). Such constraints which follow directly from the definition of
the conjugate momenta are called primary constraints. The number of primary constraints
in a system is equal to the number of zero eigenvalues of the Hessian matrix

orH 0?L

OXv  OXrXV
Note that by the Inverse Function Theorem we need that all eigenvalues of % be nonzero

if we want to express P* as a function of X*. Hence in a system with primary constraint,
we cannot express P* as functions of X*.

Remark 1.3.2. Any system with “7” —reparametrization invariance has primary constraints.

The Hamiltonian for the system is

. mXHX .
H=P'X,—L= —" 4+t my\/ XX, =0.
VvV —X"X,

This is not surprising. Vanishing Hamiltonian signals that nothing changes if we pick another
parametrization. To quantise the system, we follow Dirac prescription. We promote the fields
to operators and the constraint to an operator equation and demand that the wavefunction
|psi(X) satisfy the operator equation:

(PP, +m2)¥(X) = 0.

The Schrodinger equation is
ov
1— = HV =0.
or
This simply implies that the wavefunction does not depend on the parametrization - some-

thing that we expected. After the standard substitution

0

PH = _id —
! oxw’

i, Wwhere 0, =

11



the operator equation (|1.3.1)) becomes
(9,0 —m*)¥ = 0. (1.3.3)

This is the same equation that we got in the first method. Hence we again get the same
dynamics.

1.3.3 Third Method - Introducing Einbein

Note that both the equivalent actions above have squareroots which makes it difficult to
quantise when we go to path-integral quantisation. So, we somehow want to get rid of the
squareroot. Moreover the two previous actions cannot be generalised to massless particles
due to the m factor in front of the action. Both these problems can be fixed on the expense
of introducing another auxiliary field - an einbein in the action which will be fixed by its
equation of motion in the classical theory. To be more precise, consider the action

1 XrX
Sez—/d7'< “—em2),
2 e

where e = e(7) is the auxiliary einbein field. Varying the action with respect to e gives

_
55:1/d7 —X X“—m2 de.
2 e?
\/ —X1X,
e=4 = (1.3.4)

m
Not that the equation of motion of e is an algebraic equation and hence the field e is not
dynamical. If we now plug the expression for e from (|1.3.4) in the action S, we get

1 XrX \ —XHX 2 —

S. = 5/(17 St TR . —Tm/dn/—XﬂX#
/- X1X, m

So both the actions are really the same. Thus the two actions are equivalent classically and

give the same dynamics. We now want to quantise this action. The conjugate momentum
corresponding to e is

Thus 05 = 0 implies

=5

oL
P.=—=0.
0é
The momentum conjugate to X* is
L 2 . -
P“:a—.:—X“ = X! =eP". (1.3.5)
X, 2e

12



The Hamiltonian of the system is given by

2
H =XV, = L = eP'P, = S PP+ Toe = S(P'P, + m?),

where we used (|1.3.5)). The Poisson bracket
OP.0H 1

2T (pm 2
9B, gc oMt m),

{Pe7 H}P.B. =

But since P, = 0, we get
€ 2
H = §(P“PM +m*) =0. (1.3.6)
The next step in the quantisation process is to promote fields to operators and use the

standard operator substitution for P*. Suppose the wavefunction of the system is ¢ =
(X, e). Then the operator eqaution corresponding to P. = 0 implies

0
—Z% =0.

This means that the wavefunction is independent of the einbein - again something that we
expected physically. The operator equation corresponding to (|1.3.6]) gives

(P'P,+m*)p =0 = (9,0" —m*)p = 0.

Thus we get the same quantum dynamics as in the previous two methods.

1.3.4 Fourth Method - Gauge Fixing

We begin by observing that S, has diffeomorphism symmetry. Indeed if we choose another
parametrization 7 = 7(7), then
X*(r) = X"(7(7)) = X*(r)
and ~
ox®  oX*or
or  0F or

and using (|1.3.4)

() = 0XroX, | 0XroX,|oF x|
ar= or or or or lorl” " \or
Thus we see that
1 or X" oX, (07\> 1 |oF|™" oF
—— d~ e - M - N . 251\ | 20
S 2/ o7 ( o7 or (af) & |or| D) a¢>

13



So before we go on quantising the system, we will fix a gauge. We choose a reparametrization
7(7) such that
e(t) = 1.

With this gauge choice, when we go to the quantum theory, we will have to take care of
the equation of motion of the einbein and impose it as operator equation with the chosen
gauge. We follow the standard procedure of quatization by promoting fields to operators.
The equation of motion for e with the above gauge choice becomes:

1 9X* 09X
) == o
() m? 01 0T
Using ([1.3.5)), the equation of motion of einbein becomes
P'P, +m?* = 0. (1.3.7)

With the chosen gauge, the action becomes

1 ..
S = §/d7' (X“Xu—m2>,
where we removed the tildes for brevity. Using (|1.3.6) and the gauge choice along with
(1.3.7)), the Hamiltonian is given by

1
H= é(P“PH +m?) = 0.

With the standard substitution for the momentum operator P, = —id,,, the wavefunction
of the system satisfies

(8,0" — m2)¥ = 0.

Hence we again get the same dynamics.

14



Chapter 2

The Relativistic String

We now want to write an action of the a free relativistic string - the fundamental objects
in string theory. As we discussed in the previous chapter, we need to start with a Lorentz
invariant action. Since the string is a two dimensional object, it traces a surface called
the worldsheet in the spacetime. The most natural choice of the action would then be the
surface area of the worldsheet traced by the string. We begin by deriving the action of the
relativistic string.

2.1 Nambu-Goto Action

The surface traced by the string can be parametrized by two parameters (o,7). Let the
worldsheet coordinates be X#(o, 7). To calculate the area of the worldsheet, we will use the
worldsheet coordinates. Infinitesimal change in the parameters ¢ and 7 along the worldsheet
coordinates is

DG DG

oo = o, 0T = dr.

do or
Note that the area of the parallelogram determined by two vectors A and B is given by

A-B)?2
|A|||IB]| sin® = ||A||||B]|V1 — cos? 0 = \/AQB2 — %A2B2

= V(A A)B-B) - (A-B)
A-A A-B]\®
= (det [A-B B-BD !
where ||A]|> = A- A = A% So the infinitesimal area of the parallelogram on the worldsheet
determined by the vectors o and 07 is

Wl

dArea = [—det (0, X"0X,)]2, o =0"=(0,7), a=1,2.

15



The minus sign indicates the fact that one of the vectors is timelike (X? < 0). The Nambu-
Goto action is then defined by

SNG = — / dO'dT\/—det (ﬁaXﬂaﬂX#), (211)
M

2o

where M is the surface traced by the string, o is called the Regge slope. The reason for this
name will be evident in later chapters. We often write

hag = 0a X" 05X,

The action can then be written as

[NIES

Sy = — / dodrLyg, Lng= [_det(haﬁ)]
M

2ma!

The worldsheet is in general a curved manifold embedded in spacetine. In the language of
differential geometry, h.gs is called the pullback metric from the ambient spacetime. The
factor of ﬁ can be interpreted as string tension.

2.1.1 Symmetries of the Nambu-Goto action

Swne has global symmetries as well as local symmetries. Let us look at them more closely.

Reparametrization Invariance

If we choose another parametrization for the worldsheet 7(o, 7), 5(0, 7) then the Jacobian of

the variable change is
ot

do  da
J = det [gg g_;]
or

do
and the worldsheet coordinates changes as

X" 9X* 05"
doo 958 doo

This gives L
, _0XroX, 05 05  + 057 05°
BT 05 95° 9o doB P 9o 9o’

Thus we have _
det (hag) = det <ha5> 72,

where we used the fact that J = det (%) . Plugging everything in the action, we see that

Sng = —— /M dod7 ]! <—det (haﬂ))é J = Sne.

2ma!

16



Reparametrization invariance is also called diffeomorphism invariance and is a gauge sym-
metry of the action. We can write the infinitesimal version of the reparametrization as
follows:

0% = 0% =0 + £+ 0(8). (2.1.2)
Under this change in parameter we have

XHMo®) = XH(E) = XH(0®).
We have B

XH(0Y) = XH(0%) = XM (o — %) = XH(0%) — £20, X",
where we used Taylor’s theorem. This gives
SXH = XM(FY) — XH(F%) = —£20, X" (2.1.3)

Poincaré Invariance

The worldsheet coordinates transform under the Poincaré transformation as follows:
Xt XH = A" XY + oo (2.1.4)

where A*, is a Lorentz transformation and c* is a constant vector. This is a manifest
symmetry of the action. Poincaré invariance is a global symmetry of the action. The
infinitesimal version is often calculated in a first course in quantum field theory. We will
record it here for later use.

XM =al X"+ b, (4 = —ay,). (2.1.5)

2.1.2 Equations of Motion
We begin by expanding out the determinant in the action. We get
det (hop) = det (0 X"05X,) = X" X% — (X' - X)?,

where

_ox
o

1

. N2|2

S = —— / dodr {—X’QXZ + (X X) } ,
2o

where we have written X = X*. The conjugate momenta are given by

. 0X
X' X=—"— & X’=X"X,.
or

So we have

HT:aLNG 1 (X'XI> X, —(X?) X,
axH 2o - \/<X’ ‘ X>2 _ xox
1—[022/51\/@ _ 1 -<X‘X/> Xu—(XIQ)Xu
B oXm 2o/ _\/<X/~X)2 - <X’2X2)

17



Observe that

v

PLyc v O

—_—— = 0 XZ/IO,
o0XHOXV oXV
@.ZE—NC.’ XY = a—r.[‘T‘X’” = 0.
o0XHIXV oxXv

. 2 . . . y
So the Hessian gifgﬁ has two zero eigenvalues with eigenvectors X*, X’ must have two
constraints. We can check that

X" =0, IO+

/ r
47T2O/QX”XH =0. (2.1.6)
These are one set of constraints. Another set of constraints arise from the fact that
PLynG o PLNG
) G 7% R
The resulting constraints are
Iy X" =0, I+ 47r2a2XMX“ =0. (2.1.7)
The Hamiltorian
,HU:HZX/M—,CNG:O; & 'HTZH;XM—,CNG:O.
So the dynamics is determined by constraints. The equation of motion is given by
oIl oIl°
T () 2.1.8
or + Jdo ( )

We can also write the equation of motion in another way. Recall that

1
Syg = — / dodtv—h; h = det hqg.
2 Jor

From general relativity we have

oV —h = %\/—hh%éh@ﬁ

So
0Lna 1 1 B
5 (0, X") 2mal (2 Vv —hh (wﬁXﬂ))
So equation of motion is
OLna '\
o (s57) =
which gives

Ou (V=R (95,)) = 0.

18



2.2 The Polyakov Action

The final goal of studying string action is to quantise the action and analyse the spectrum
that we obtain. The first challenge that we face when we try to quantise the Nambu-Goto
action is the squareroot in the action. It is generally tricky to quantise such complicated
actions when we go to path integral quantisation. This is why we will use the fourth method
of quantisation introduced in Chapter [l To this end, consider the following action:

1
S, = / dodr/—gg™? 0, X"05X ., (2.2.1)
M

4o

where g = det(¢g®®) and ¢** is an auxiliary background field which plays the role of the
einbein in the fourth method of quantisation. This action is called the Polyakov action.
The auxiliary field g, is a dynamical metric on the world-sheet with Lorentzian signature
(—,+). Thus the action Sp can be viewed as a bunch of scalar fields X*(o, 7) coupled to a
2d gravity theory.

2.2.1 Equivalence of Sp and Sy¢

Let us find the equations of motion of g,g. Varying Sp with respect to g.g gives two terms.
We get

1
Y

1
0Sp = — /dUdT [\/—gégaﬂaaX“ﬁgXu — 5\/—gga55gaﬁg“b8aX“8qu} .

1
6Sp =0 = /—g¢dg™® <8aX“85XM — §gaﬁgab0aX“aqu) = 0.
Here we used 1 1
5/—g = _5\/_9904,359&6 = 5\/—99‘”5 0Gas-

So the equation of motion of g,s is

1
0aX"0BX, = §ga5g“b8aX“(9qu.

Or
1 C
0u X" 05X,y = 50050 X DX, (2.2.2)

Taking determinant both sides we get
1
det (0,X"05X,,) = det <§ga58‘3X“8¢Xu> )
Since gqp is 2 X 2, we get

1
det (804X“65X#) = Z (acX'uacX,u)2 g

= \/ — det (0o X105X,) = %\/_—g (0°X*0.X,,) .
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Substituting this in Sp gives Syg. Thus we see that Sp and Syg are equivalent classically.
These two actions presumably gives same quantum dynamics but a rigorous proof is lacking.
Indeed path-integral quantisation of Sy is rather difficult to perform due to squareroot and
manipulating it to get results involves similar tricks as we have used in the Syg — Sp
transition.

2.2.2 Equation of Motion

Let us vary the action with respect to X* with §X* (o, 7) = 0.X* (0, 71) = 0 for some initial
and final value 7y, 71 respectively of the parameter 7. Assuming that the string length is ¢,
we have

_ n(ga
0Sp = 47ra dr [ do[20, X" (070X ,)]
_ axp axh
= 27ra dr [ do [0 (0°X"6X,) — (0,0°X")0.X,]
=5 dr [ do (0,0°X")6X, — /dT/dO’ (0°X10X,) — 0. (0" X"5X),))
m

T1

¢
! dT/dO' (0 0°X") 06X, + —
0

T1

27ra 2o

70

70

/ do (9" X") X,
0

N TV
=0as 6XH (0,70) = 6XH (0,71) =0

T1 ¢
dr (° X5 X,,)

0

70 ——

surface term

2T

To get the equations of motion, we need the surface term to go to zero. Physically we
distinguish between two cases - the closed string and the open string. We will deal with the
two cases separately.

Closed Strings

We normalise the string length so that ¢ = 27. Closed string then means that the ends of
the string are joined together in a smooth fashion to form a loop. This means that X*(o, 7)
are periodic in o with period 27 :

XMoo+ 2m,7)=X"(o,7).
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This implies that 6.X,(0,7) = 60X, (27, 7) = 0. Thus the equation of motion for closed strings
1s

9a0° X" = 0. (2.2.3)

Open Strings

The ends of open string are free and so we need to impose boundary conditions on the ends
of the open string. We normalise the length of the string to £ = 7. We impose the boundary
condition such that the surface term vanishes. There are three ways for this to happen -
atleast one of the two 07 X* and 6.X, or the combination 97 X*§ X, must be zero at ¢ = 0
and o = w. Hence we have three different bondary condition:

1. Dirichlet boundary condition: §X, =0 ato=0,.
2. Neumann boundary condition: 9,X, =0 at o =0, .
3. Robin boundary condition: 9,X,0X" =0 at o =0, 7.

The first two boundary conditions have been studied in detail in literature and we will
also analyse each boundary condition along with mixed boundary condition in detail as we
progress in our study.

2.2.3 Symmetries of Sp

As with Syg, we can directly read off two obvious symmetries of Sp:

Reparametrization Invariance

If we transform the parameters as ¢® — 0* = 7%(o) then the scalar fields X* transform

X0, 7) — XM(5%) = X* (6°)

and the world-sheet metric g,g transforms in the usual way

o an 007 Do°
Jop — Jap (6°) = @@976(0)-

We can find the infinitesimal transformation under 0 — 0® = 0 — n®, where n“ is small,
using Lie derivative. Indeed under infinitesimal transformation

(5ga5 = ﬁngag = Voﬂ?ﬁ + Vﬁ?]a,

where V,, is the Levi-Civita covariant derivative with the usual Levi-Civita connection

(6% 1 (0%
By = 59 ’ (9895 + Ovgps — O5Gpr)

Also y/—g changes as d(y/—¢g) = 0, (n*/—g) . The Polyakov action Sp is easily seen to be
invariant under reparametrizations. This is a gauge symmetry of the action.
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Poincaré Invariance

This is a global symmetry of the action.

Xt — XM= A XY 4 &
for some constant £#. The infinitesimal version of this transformation is given in Subsection
211

Weyl Invariance

There is another gauge invariance called Weyl symmetry. Under this X# — X* and the
metric transforms as

9as — Jap = 2*(0)gas
or infinitesimally if Q%(o) = €?#(®) then
09ap = 20(0)gap.
To see that this is a symmetry of the action, note that /=g — Q?(o)\/—g as
det (gas) = Q*(o)det (gap)

and ¢ — (Q(0))"2¢g*". Thus factors from /—g and g** cancel.

Remark 2.2.1. Weyl transformation is not a coordinate transformation. Rather it is a
local change of scale under which the theory is invariant. More precisely, this scale change
preserves angles between as the metric transforms conformally.

Remark 2.2.2. Weyl transformation is unique to two dimensions since /—gg®’ remain
invariant under g,s — ©2¢gap only in two dimensions.
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Chapter 3

The Closed String

In Chapter [2] we found the correct action for relativistic strings namely the Polyakov action.
We also found the equations of motion arising from the action and depending on the type
of string - open or closed, we imposed boundary conditions. In this chapter, we will solve
the classical equations of motion for the closed string and also quantise the theory using two
different procedures. We will also analyse the closed string spectrum.

3.1 The Closed Classical String

As we saw in the previous chapter, the Polyakov action has two gauge symmetries. Hence to
find the equations of motion, we first need to fix a gauge. This means that we should make
an appropriate choice of the background metric using our gauge symmetries.

3.1.1 Fixing a Gauge

We have two diffeomorphism invariance namely for o, 7 and three independent metric com-
ponents. Write

Yoo  YGor
af = then or — Yro-
i ( Jro  YGrr ) g g

Now since gns has signature (—,+), locally one out of g,, and g,, must be positive since
Trgos = goo + g+ = 0. Under diffeomorphism we have

- 007 do®
Gap — Gap = %Wgya.

q — 6_0 ’ + 0_7' ’ _|_26_0-@
Joo =\ o5 ) 97 \o5) 97 T o5 057"

~ (80)2 (87’)2 0o Ot
9rr = | 3= gaa+ - g7—7+2

This gives

o7 o7 F o
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and

-~ - 0000 +8T(97’ +87'(90 +8067’
Jor =90 = o5 079 T o5 o9 T o5 077 T 05 o7 0T
Now suppose in a neighbourhood of (o, 7), g, > 0 then we put g, = ¢,, = 0 and g,o = —gy-

Thus we have a system of two first order partial differential equations to solve for two function
o(o,7) and T(o, 7) that is we need to solve for o(o,7) and 7(o, 7) from

oo\ ? or\? 0o Ot
(53) oo+ (55) o+ 255 500 = o
0o 0o ot Ot ot Jo 0o Ot

dwor Y ozart Tz ort Y asart =

Solution to this exists atleast locally by Cauchy-Kowalevski theorem (see [5, Chapter 3] for
a proof) since the coefficient functions are real analytic. Thus we have transformed g,z to
gr+Nap using the two diffeomorphisms. Since g,, = e®@) for some function ¢, thus we now
use Weyl rescaling to transform

Gap — 6_¢(U)ga5 = Nas-

This gauge is called Conformal gauge.

Remark 3.1.1. Any 2d metric can be made flat using Wely invariance: Suppose g5 =
e?9)g,5 then one can easily check that

V—9gR =g (R—-V).

If we choose ¢ such that V2¢ = R then R’ = 0. But in 2d vanishing Ricci scalar implies
that Riemann curvature tensor is zero since in 2d one can show that

R
Ropys = b (ga»yggs - gaégﬁ'y) .

Hence the metric is flat.

Remark 3.1.2. Can the world-sheet metric be made flat globally? Depends on the topology
of the space. Locally the metric can be made flat using the three gauge symmetries. Suppose
we could extend this locally flat metric to whole worldsheet. This means that the whole
worldsheet is covered by a coordinate chart which is flat. This in turn means that the
Ricci scalar identically vanishes on the worldsheet. Topologically since in 2d, the Euler
characteristic y of a manifold satisfies
X X / R.
M

Thus a necessary condition of the extension to be possible is that y = 0.
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We have fixed a gauge. Now we need to find the equation of motion of g,z and impose it as
a constraint on the classical system after substituting g.g = 1,3. We have already calculated
the equation of motion in Subsection but we can recast it in terms of energy momentum
tensor which is often more useful. We begin by writing the gauge fixed action:

1 Q
S =~ / dodrd, X" X, (3.1.1)
The equation of motion for X* is
00, X" = 0. (3.1.2)
Next we have
08 1 V=9
=— — XPO°X,, 4+ /—90, X105 X, | .
5gb Aral [ 2 GO X" O Xu + 906X 05X,
Define the energy momentum tensoif| by
1 48
Tog = —4ma/ —
g V9 59&5
We get
1
Top = 0, X"0sX,, — éga@&:X“ﬁch.
So that

1 C
Ta6|go¢B:no¢B = aOéXuaﬂXu - EnaﬂacX'ua XN'

The equation of motion for g,z was
0 X"0 = 0. X0
OCAXV 5XM = 590"8 CX XM'
So our constraint is 7,z = 0. Written in terms of components:

. . 1 . 1 /.
Ty = XX, =0 Ty =Tp =X~ 3 <_ <—X2+X’2>> =3 <X2+X’2>.

So we have to impose two constraints

Xrx!, =0, <X2 n X’2> —0. (3.1.3)

N | —

So the equation of motion is a wave equation along with the two constraints. We will now
solve it.

Inote that this is not the usual definition of energy momentum tensor. In general relativity (GR) we have

different normalisation. In GR the energy momentum tensor is given by T3 = —\/% 53% .
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3.1.2 Solving the Equation of Motion: Mode Expansion

We will use the lightcone coordinates to solve the equations of motion (3.1.2)) subject to
constraints (3.1.3)). Introduce the lightcone coordinates
ot =1+o0,

then
0, =0;+0,, 0_=0;—0,.

With this, the equation of motion 9, (0“X*) = 0 reduces to
0,0_X"=0. (3.1.4)
Indeed we have
04 0_ X" =04 (0, X* — 0, XH) = 0rp XH — 076 XH — 05n X — 05 XH = 0.
The most general solution to 9, 9_ X" = 0 is given by
XHo,7) =X oh)+ Xh(o7) (3.1.5)
for arbitrary functions X and Xg. For closed strings, we have the periodicity condition
X*¥o+2m,1)=  XH(o,7T).

This implies that X* can be written as a Fourier series. More precisely, we have

1 a1, .
Xy (oh) :7+§a’p“0++z Ezgaﬁe i
n#0

(3.1.6)
Xf(o7) = %ﬂ -+ %o/p“a + Z\/gz %aﬁfbem"_.
n#0
The functions X} are called left movers and X1, are called right movers.
Remark 3.1.3. 1. The factors o/, % have been chosen for convenience when we quantise

the system.

2. X} and X% are not periodic due to the linear term o%,0~ but the combination
X1 (o%) + X% (07) is periodic as o cancels from the combination o™ 4+ 0~ = 27.

3. The quantities z* and p* are the position and momentum of the center of mass of the
string. We will prove this explicitly. Observe that for the Polyakov action,

OLp 1 9 o 1.
=252 _ [ xex X’“X’] - X
) 4o’ 9Xm wt # ored T H
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So

2 1 . 1 2 . . B 1 ,
P“:/ do X / do X} (6")+ X (07) = 2ma’ph = pH,
0 0

2o 2o 2ma’

and

" = S " do X" = S /27r do X! (o) +X} (07) = S 27" + 27/ phr| = at+a'phT.
2m Jo 2m Jo R 2m

So we see that p* is indeed the momentum and x* is the position of center of mass of

the string at 7 = 0.

4. The coordinate functions X* is real. So (X})" = X! and (X%)" = X%. This means
that the coefficients o and o satisfy

()" =at, and (a¥)"=a", VneZ\{0}.

—n

Recall that we had two constraints

Xix, =0 and o (X4 X72) =0,

| —

In Light-cone coordinates, these transform to

(m ; a) X" <8+ ; a) X,=0

— (04 X" +0_X") (0, X, —0_X,) =0
— (0. X)) — (0_X")* =0

— (0. XH)* = (0_X")°.

The second constrain becomes

2 2
(55)0) (7)) =0
2 2
— (0, X"+ (0_X")? + 20, XPO_X, + (0. XH)* + (0_X")* — 20, X"D_X,, = 0
— (0, X"+ (0_X*)* = 0.

Combining these two we get the constraint
(04 X" =0=(0_X"). (3.1.7)
We now impose this constraint on the Fourier modes. We have

O'//plu o —ino~
O_Xt=0_Xh = 5 +\/5 Z ake

nez\{0}

o o
_ w,—ino
=1/ 5 E abe ,
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where we have defined

The constraint (9_X*)? = 0 gives
o ino— o —imo~ o —ino~
(V5 S ) (5 St ) =53 (S -0
neZ meZ n€Z \keZ
where we used Cauchy product formula and ay, = of;. If we define
1
L, := §Zak-an_k, (3.1.8)
keZ

then the constraint becomes L, = 0 for every n € Z. Similarly the constraint (9, X*)? = 0

gives L, = 0 for every n € Z where

~ 1 o
Ln=5 D -, (3.1.9)
kez
and & = «f. The quantities L, and L, are called classical Virasoro generators. The

constraints Ly = 0 = Ly are particularly interesting as they contain information about the
physical degrees of freedom of the string - the string momentum. We have

ALOZZ %'ZE:(Ik O, ‘ZOZZ %’}E:éik'éi—k-

k€EZ keZ

In relativistic mechanics, we know that
Py = —M*

where M is the rest mass of the particle. Since

we see that the constraints Ly = Zo = 0 implies

1 a 1 o~ ad

n#0 n#0
This gives
4 4 ~ ~
=2, e =tV a, 4, (3.1.10)
n>0 n>0

This is called the level matching condition and will be crucial when we analyse the spectrum
of the quantised theory.
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3.2 Quantisation of Closed String

There are two ways to quantise the Polyakov action. One is the cannonical quantisation
using Dirac’s presciption. The other is Feynman’s path integral quantisation. The cannonical
quantisation procedure involves two ways as we are dealing with a gauge theory:

e Covariant quantisation: Change cannonical Poisson brackets to commutators and
impose the constraint obtained by fixing a gauge as an operator equation to be satisfied
by the states X* which are now operators. This method is manifestly Lorentz invariant
but gives rise to negative norm states called ghosts. These decouple from the theory
in the critical dimension D = 26.

e Lightcone quantisation: In this method we first solve the constraints to classify all
classically distinct states and then we quantise the physical states. We break Lorentz
invariance in the process and later obtain the same critical dimension D = 26 to ensure
Lorentz invariance.

We will look at both of these quantisation scheme in detail now.

3.3 Covariant Quantisation

We have D scalar fields X#, 4= 0,1,..., D — 1 and two constraints

XtX, =0 and X4 X?=0.

3.3.1 Poisson Brackets

Let us begin by computing the classical Poisson brackets.

(i) Equal 7 Poisson bracket {X*(o,7), X" (¢/,7)}p5 = 0.

Proof. For Polyakov action, we have I, ~ Xu. We will use the notation II,, := II},
everywhere unless stated explicitly. Thus this P.B. is obvious. O

(ii) Equal 7 Poisson bracket {II*(o,7),11" (¢/,7)}p 5 = 0.

Proof. Obvious from the fact that I ~ X - O]

(ili) Equal 7 Poisson bracket {X* (o, 7),1I" (¢/,7)}p 5 = (0 — o).
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Proof. By definition

OXH(o,7)0Il" (o, T)
" Vg =
{X*o,7),II" (0", 7)}p g =1 0Xr(o,7) Ol o, T)

= np’\(ﬁf&é (0 —0d')
— (o)

]

From these Poisson brackets, we can easily calculate the Poisson brackets for x*, p# a#, o

We have

{x‘uﬂpy}P.B. = n;w’ {aﬁw O‘Z}P.B. = 0
{a o} pn ={ak, al}y = —imn" 0 i o

(3.3.1)

Using these Poisson brackets, we can get a algebra satisfied by the Virasoro generators.

Lemma 3.3.1. The classical Virasoro generators satisfy the Witt algebra:

{Ln, L} pp. = 2(m — 1) Linin, {L”’ Lm}P.B. = ilm=n)Lnim, {Ln’ Lm}P.B. =0
(3.3.2)

Proof. We have

{Lm Lm}p,B, = {Z Ay - Oy, Z & 2 ak}
P.B.

IEZ keZ

o § : o v P o
- {nﬂVanflal 3 Moo Xy Ok }P,B,
LkeZ

Using
{AB, CD}RB. - {A, CD}PBB + A{B, CD}P.B.
=C{A,D}pp B+{A,C}tpp DB+ AC{B,D}pp + A{B,C}ppD,

we get

{Ln, Lin}pp = Z Nuvpo [O‘/'umfk {O‘an O‘g}p_g o + {azfz: afnfk}P.B. o af
1LkeZ

+ah_of _Aa,al}pp +ah_ {af, agLfk}P.B. af ]

_ p o v . V.o
= E NuwTpe | — 0o e "7i(n — D)6p_rin00f — i(n — D0 6p_iim—k 00 af
| kez

. vo [ P N7 12 a
- Zl5l+k7077 a, O iln p5l+m—k70an—kak‘}

=i Z (el otk + Mot w0 (K —m)+
keZ

+ nupaﬁ%afn_kk + Mo (k — m)aﬁm—wﬂ 5
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where we used (3.3.1)). Replacing m — k by k in first and k& by k£ — n in third sum we get

{Ln, L} pp = —i Z [nup&iaam%(m — k) + uory o (k — m)+
keZ

+ Mupy g, (0 = k) + 1 (k= m)ady, o]
= —1 Z My gk (M — M)
keZ
=i(m —n)Lyin.

Similarly, we get all other Poisson brackets. [

3.3.2 Cannonical Commutation Relations

Following the usual way, promote the scalar fields X* to operator valued fields and impose
the cannonical commutation relation following the rule:

{.7 '}P.B. = %[’ ]

Using the Poisson brackets for X*#, II*, we get the following commutation relations:

[X*(o,7), 11" (¢, 7)] = in"d (o — o)
(X" (o,7), X" (o', 7)] =0 = [XH(o,7), 11" (¢/, T)].

For the Fourier modes, using (3.3.1)), we get

[z, p"] = in™
| = mn"omino = [0, ay]

(3.3.3)

v

o, e,

and all other combinations are zero. These commutation relations are similar to those of
creation and annihilation operators. Indeed if we define

1 1
—ar (@ = —=a" , n>0,

then we will get the usual commutation relations:

[ag, (ag)q = G-

[
a, =

Similarly we can put

then we get the commutation relations:
[ag, (aﬁ,;)q — G-

So for every scalar field X#, n = 0,1, ..., D—1 we have two family of creation and annihilation
operators corresponding to the left movers and the right movers.
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Remark 3.3.2. We cannot directly get the commutation relations satisfied by the Virasoro
generators from the Witt algebra. In subsequent sections, we will calculate the quantum
algebra of Virasoro generators from the commutation relations of the Fourier modes. As we
will discover later, the quantum algebra of Virasoro generators, called the Virasoro algebra,
has an extra central charge term and hence the quantum algebra is the central extension of
the Witt algebra. We will see that this is related related to the fact the Weyl symmetry
which is a symmetry of the classical action does not survive quantisation.

3.3.3 Constructing the Fock Space

We will now construct the Fock space of the theory. We begin by constructing the ground
state. We now have the creation and annilation operators to define the vacuum of the theory
Denote it by |0). Then we demand:

akl0) =0=akl0) forp=0,1,...,D—1; n>0.

Note that this condition alone does not uniquely fix the ground state. This is because, the
ground state here is quite different from the one in field theory in the sense that there is
a string specified by the center of mass position z# and momentum p*. So we denote the
ground state by |0; p*) which now has the property that

PO ") = p*[0:p7), (3.3.4)

where p* is the momentum of the string. So the ground state of the theory is now defined

by

aklo;pt) =0=ak0;p") foru=0,1,...,.D—1; n>0 (3.3.5)
and (3.3.4). A general excitation of the string is
(Qlill)nul (OéliQQ)n#z T (azll)nul (CNJéliQQ)nV2 e |0;plﬁ>.

(=)' = &*,, and

The norm of states is defined via the Hermiticity property (o) = o*,,
the normalisation

(0; pl0;p) = (2m) 767 (p — 7). (3.3.6)
This Fock space is not physical since we have not yet imposed the constraints. After imposing

the constraint, each excited state will be interpreted as a particle. Hence we have infinitely
many species of particles in this theory.

3.3.4 Ghosts

We immediately come across a problem. The theory has negative norm states — the so called
ghost statef’] Since 1% = —1 < 0 we have

[0, a%,] = [ag, (agn)q =-n and

[, &0] = [ao (a9 )q S

n n? -n

2these are different from Fadeev-Popov ghosts
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Consider states of the form |¢) = o |0;p#) for m > 0. For these states we have

W ) = (p:0(a2,) al,| 0:p")
= (p";0]ay,0? !0 )
= ("0 |—-m+ 2,00, 0;p*)
=—m<p“;0!0;p“>+< “ 0‘( ) af ‘Op >
o< —m < 0.
Ghosts are problematic because these are in contradiction to the probabilistic interpretation
of norm in Quantum mechanics. Our only hope is to apply the constraints and hope that

these ghosts decouple from our theory. That is indeed the case when we fix the dimension
of spacetime to be 26.

3.3.5 Normal Ordering and the Quantum Virasoro Algebra

As discussed in the previous section, the constraints in terms of Fourier modes is given by
the vanishing of the Virasoro generators. But now, the Fourier modes are no more scalar
valued functions but are operators on the Hilbert space. From the commutation relations
(3.3.3), we see that the Virasoro generators

:%Zak'a”k and anézak'ank

keZ keZ

v

can be defined unambiguously for n # 0 as o}, a”_, and the respective tildes commute for

n # 0. For n = 0, we have

LO:%Zak-a_k, Zozézak&_k

k€EZ keZ

but since o, a”, and the respective tildes do not commute, the definition of Ly and EO is
ambiguous in the quantum theory. We need to pick an ordering convention to define Ly and
Ly. The natural choice is the normal ordering — we put annihilation operators a#, n > 0
to the right of creation operator o, n < 0. With this choice of normal ordering, we put

1 - 1 ~ 1 ~ -
=5 E oy g = E a,k'ak—i—iag, :Ly: = 3 E Oy - O E ak—ir ao.
kez k=1 kez k=1

Under the commutation relation on o, a# and the choice of normal ordering, we can calculate
the Virasoro algebra. We will show that

= (n (2 =1)) Gmsmo.

Ln7Lm: - an
[ J=(n—m)L, +12
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where c is called the central charge. Recall that the classical Poisson bracket is
{Lna Lm}P.B. = Z(m — n)Lern

This extra term is due to conformal anomaly which is due to the breaking of Weyl symmetry
in the quantum theory. As we will prove later, the expectation value of the trace of the energy
momentum tensor (7% ) o« R where R is the Ricci scalar. The nonvanishing of the trace
implies that the Weyl symmetry is broken and hence we have the conformal anomaly. Hence
the Virasoro algebra is the central extension of the Witt algebra. We will not define this
term precisely here. From now on, we will omit the colons in the Virasoro generators but
they are assumed to be normal ordered. We begin by proving a lemma.

Lemma 3.3.3. For any m,n € Z, we have

Iz _ I P S
[am7 LTL] - maernv [am7 Ln] - maern'

Proof. With the choice normal ordering we have

Ln = %Zank L8 7 "0

kEZ

So we have

1
[k L,] = 5 Z [k o g -
kez

Now using [A, BC| = [A, B]C + B[A, C] we get
1

[0, L) = 5 > Amporal_y o, o)+ 15,20y, of ] g}
kEZ
1
~ 9 Z {15, (" min0 + 0" Mbmin ko) }
kezZ

g

= % {ngai-i-mm + nﬁaern - m}

i

- mOém+n.

The proof for the tildes is identical. n

Theorem 3.3.4. For any m,n € Z, we have

[Lus L) = (=) Lo + 75 (7 (0% = 1)) Sinino,

[En, Zm] =(n— m)ZHm + % (n (n2 — 1)) Omtn0-
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Proof. We have

1
[Lm7 Ln] = 5 Z[:am—k C Ol Ln]

kEZ
o
1
:_g [ag - Oy L +§§ [Q—t - Oy Ly
k<0 k=1

1
- 5 Z Q- [am—lm Ln] + [ak7 Ln] Oy
k<0

1
£33 o Lol + o Ll - e

E>1
1
- 5 Z {(m - k)an *Ampyn—k + kOén-i-k . am—k}
£<0
1
+ 5 Z {kam—k " Oy + (m - k)am-‘rn—k ) ak} )
k>1

where in the second line we broke the normal ordering in the two sums and used Lemma
3.3.3| in last line. We now shift the second and third sum by n ie. substitute n + k by k.
We get

1 1
[Lma Ln] 25 Z(m - k)ak’ *Ap4n—k + 5 Z(k - n)ak *Axmptn—k

k<0 k<n

+ = Z —n am—i—n kO + = Z m — k)am+n kO

k>n+1 k>1

Now we need to normal order the second and the third sum. If n > 0 then the second sum is
not normal ordered and if n < 0 then the third sum is not normal ordered. We will assume
n > 0 and proceed. One can get the result for n < 0 case using the same process. Breaking
the second and fourth sum at 0 and n + 1 respectively, we get

1 n
[Lma Ln] = 5 [Z(m - k)ak * Ap4n—k + Z(k - n)ak * Ap4n—k + Z(k - n)dk cQpn—k

k<0 k<0 k=1

+ Z _naern k- ak+zm k>6n+” kO Z m= k)aern kO

k>n+1 E>n+1
1
=3 E (m—n)ay, - Qpan_k + E (m —n)Qmin_k - O
k<0 k>n+1

n

+ (k—n)ay, - pan_r + Z(m — k)t - 0
k=1 k=1
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We will now use [af, @, ] = 1" kpino to normal order the third sum. We get

[Lpn, L] = % [Z(m —n)Q Ok + Z (M —n)Qnin_k -

k<0 k>n+1
n n
+ ]C — TL) (am+n kO + nukém—&-n 0) + E (m — k)am+n_k X
k=1 k=1
1
5 —n ak Ayptn—k + § —-—n am-i—n kO
k<0 k>1

+ (k —n)k b Omino

k=1 \15-/
= (m - n>l O Otpgp— k! 25m+n,0 Y (kQ - TLk‘)
2 2
keZ k=1
D 1)(2 1 1
(= ) Lon + 2 n(n+1)@n+1)  n(n+1)
2 ’ 6 2
D nn+1) [2n+1
e B (S50 (251 )
D nn+1) (1—n
= - Lm n 5m n
(m —n)Lypyn + 5 Omin 0 ( 3 )
D n(1—n?)
= - Lm n m+n,0" 5
(m —n)Lpyn + 7 5 Oman,0 6
D 2
= (m — n)Lm+n + 12m (m — 1) (5m+n’0,
where we replaced n by —m in last step. The proof for the tildes is identical. O

Remark 3.3.5. We can also derive the structure of the central charge term by using Jacobi
identity of the Lie bracket. We will rederive this algebra using the tools of conformal field
theory.

Remark 3.3.6. In case of only free Bosonic fields, ¢ = 5/ = D ie. each scalar field
contributes one unit to central charge. When we will rederive this algebra using conformal
field theory and quantise the string using path integral, we will calculate the contribution of
Fadeev-Popov ghosts to the central charge.

3.3.6 Imposing the Constraints

Recall that the constraints are L, = 0 = L, but this cannot be directly imposed on the
Hilbert space of the theory. Indeed if |¢) is any quantum mechanical state then for any
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n €z

0= {0 |[Lns L]l 6) = 20 (0| Lo| &) + 15 (n” = 1) (6] 0)

which does not hold if n # 0, £1. So we cannot impose L,|¢) = 0 for all n. So the alternative
method of imposing the constraint would be to demand that the positive modes annihilate
the physical states of the theory:

Ln|phys) =0, Ly|phys) =0, n >0, (3.3.7)

where |phys) are the physical states of the theory. This way of imposing the constraints is
equivalent to requiring that the matrix elements of all L,, (and the tildes) for n # 0 vanish.
Indeed, we easily see that L = L_,, for n # 0, thus

(phys'|L,,|phys) = 0, (phys'|L,|phys) =0, Vn.

We are left with imposing the constraint for Ly and EO. Recall that we have an ordering
ambiguity in defining Ly and Ly. We now define them using the normal ordering convention
we have chosen and impose the constraints Ly = 0 = Lo by shifting them by a constant
which we will determine later:

(Lo — a)|phys) =0 = (Zg - a> |phys) (Mass-shell condition). (3.3.8)

The constant a is called the normal ordering constant. In the classical theory, we saw that
the constraints Ly = 0 = L gave us the level matching condition. We want to understand
its quantum version. Noting that

% -
ab = ng“:ag, and p“p#:—MQ,

we see that (3.3.8) can be written as

a/
(N - ZMZ - a) |phys) =0

<N — ZMZ — a) |phys) = 0,

where - -
k=1 k=1
are the number operators. Thus the quantum level matching condition is
, 4 4  ~

Since the number operator gives the number of excitations of the string, we see that the
number of left-moving and right moving excitations are equal. Thus quantum level matching
condition imply equal number of left-moving and right-moving modes.
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3.3.7 The Physical Hilbert Space

As discussed before, the physical Hilbert space of the theory consists of states satisfying the
constraint (3.3.7) and (3.3.8]). Let us now analyse the physical spectrum.

Definition 3.3.7. A state [¢) is called spurious if it satisfies the mass-shell condition and
is orthogonal to all physical states. That is

(Lo—a)[$) =0 and (¢|¢)=0 ¥ |¢) physical .

Note that the spurious states are orthogonal to all physical states. Thus if we require the
spurious states themselves to be physical we must have

(¥ |) =0.

Definition 3.3.8. Spurious states which are also physical are called null states.

If |¢) is a physical state and |y) is a null state then, it is easy to check that [i) + |x) is also
physical and that its inner product with any other physical state is same as that of [¢). This
means that these two states are physically indistinguishable and we have the identification

) = [¥) + ) (3.3.11)
Thus the physical Hilbert space must be the quotient space
Fhys
S = 222 3.3.12
QT S ( )

where J¢q is the physical Hilbert space of covariant quantisation and %y, 75 denotes
the space of physical states (states satisfying the constraint and ) and null
states respectively. Let us now look at the states at various levels. We will only determine
the left moving sector since the right moving is analogous.

Level 0

At level N = 0, there is only one state |0;p). The constraint (3.3.8)) implies that the

mass of this state is A
M= -2 (3.3.13)
o
The norm of this state is
(0;pl0; p) = (2m)"6P) (p — p') (3.3.14)

and hence we have no ghosts or null states at this level.
Level 1
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At level N = 1, a general state is of the form
le;p) = e a1[0;p) (3.3.15)
where e = e* is a vector. The norm of this state is

(e,p'le,p) = e, (2m) 6P (p — p') (3.3.16)

and hence is nonnegative given then e is not timelike: e* > 0. The constraint ([3.3.8)) gives

the mass of this state A1
Ao d-a) (3.3.17)

Oé/
The constraints L,,|e,p) = 0 for m > 2 is automatically satisfied. We check the constraint
Lile,p) = 0. We have

Lile,p) x (p-ay)(e-a_1)|0;p) = (e-p)|0;p) = 0. (3.3.18)
Thus we must have e - p = 0 for this state to be physical. There are three cases to consider:

1. a > 1: In this case M? < 0 and is not allowed for a physical theory.

2. a = 1: In this case M? = 0. By doing a Lorentz transformation, we can take the
momentum of the state to be

= (FE0,0,-- E).
The physicality condition then becomes
pe=—Fe+EeP =0 = ®=el1.
Then
= — () + () +. .+ () = () +.. + (") >0

This means the state has no negative norm state. There can be null states which we
will determine later.

3. a < 1: In this case M? > 0 and we can go to the rest frame via a Lorentz transformation
in which
p“ = (M,0,0,"' 70)
The physicality condition e - p = 0 implies ¢” = 0. Then a nontrivial state with e # 0
has positive norm and there are no null states.

The last two cases both physically make sense but the last case does not have a known way
of introducing interactions. Later we will show that a = 1 along with D = 26 (to be argued
below) gives rise to ghost free #¢q. We will take a = 1 from now on.
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Level 2

At level N = 2, a general state is of the form

¢ e,p) = (- ag + Gua a”y) [0;p).

The constraint implies
4(2 — 4
« @

M? =

The physical constraint L,,|p, e,p) = 0 for m > 3 is trivially satisfied. We have

o ol
€y + Ecuvp a71’07p> = 07
a/
e+ F6up' =0, v=01,...D-1 (3.3.19)

Similarly Ls|p, e, p) = 0 gives

L1|C7 €,p> =

which gives

o\ 12
2 (E) p-e+ Cun =0. (3.3.20)

Let us find a particular solution to these equations. Since this is a massive state, we can
take p* = (M,0,0,...,0) where M = (& )1/2 Then from ((3.3.19)) we get

en = V2o, (3.3.21)
From (3.3.20) we get
—2V2eg+¢H, =0 = —4G0 — G0 + ¢ =0 = (= = 5o (3.3.22)
Let us now take
Gij = C0ij; Coo = D5_ 1C, eo = @( (3.3.23)

and rest all components 0. This choice clearly satisfies (3.3.21]) and ([3.3.22]). We then have
(CGepl¢ep) = (26" +2¢.¢") (2m)P8P) (p — )

- (gp-vre 2P e 0 - 0e) nPs (- )

2
=X @50~ 1)~ (D - 1) 20)8 P (p - )
- 22C52 (26 — D)(D — 1)(2m)”6") (p — p') .
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So if D > 26, then this is a negative norm state. If D < 26 then this state is a non-negative
norm state. We will quantise the string in the next section in a different way called lightcone
quantisation which is manifestly ghost free but breaks Lorentz invariance. We will show in
Section that lightcone Hilbert space is same as #¢q when D = 26 which will prove the
following no ghost theorem:

Theorem 3.3.9. (No ghost theorem) The ghosts decouple in the critical dimension D = 26
and with a = 1.

The reason we want to match ¢q with lightcone Hilbert space is twofold:

1. Once we fix D < 26 in this step we will have to show that JZ¢q is ghost free at all
levels which is a tedius task. Moreover we do not have any free parameter to fix and
guarantee that JZ¢q is ghost free.

2. The way we will prove the no-ghost theorem is by quantising the string using BRST
formalism which is a consistent way of quantising gauge theories. It turns out that

%RST = <%iightcone

and hence no-ghost theorem for ¢ requires us to prove J¢q = Hightcone-

We now determine 7, to fully characterise J#q. We will show that for a = 1, D = 26, we
can explicitly construct all states in J#,,;;. The construction of null states is based on [I].

Lemma 3.3.10. A general spurious state is of the form

|7v/}> = Z L, |Xn>

where |x,) are some states satisfying the modified mass-shell condition

(Lo—a+n)|xn) =0, Vn>1.

Proof. By definition, we have

(p|¢)=0 V |¢) physical

We know that
L,l¢) =0 Vn>0

Thus we can write

N ~ b
) ;L_nb(r) (smce L', Ln>
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for some state |y,). Mass-shell condition implies

(Lo —a)|¢) =0

= Y (LoL_y — aLy) [xn) = 0.

n=1

By quantum Virasoro algebra LoL_,, = L_, Lo+ nL_,. We get

WE

(L_nLo+n—aL_,)|xn) =0
1

3
Il

U
NE

L_,(Lo—a+n)|x., =0
1

= (Lo—a+n)|xn)=0 ¥V n>0.

3
I

]

Definition 3.3.11. The states |x,) satisfying (Lo — a + n) |x») = 0 are called level n states.

Lemma 3.3.12. Any spurious state |¢) can be written as
) = L1 |x1) + L2 |x2)
where |x1) and |x2) are level 1 level 2 states i,e. they satisfy

(Lo—a+1)|x1) =0 and (Ly—a+2)|x2) =0.

Proof. By Lemma [3.3.10, we have

) =S L)
n=1

where (Lo — a +n) |x,) = 0. We will use induction to show that L_,|x,) can be written as
L_y|x1)+ L_o|x2) for some level 1 and level 2 states |x1) and |xs) respectively for all n > 3.
Let us begin with the base case. Note that by quantum Virasoro algebra, we have

[L_l, L_Q] == (-1 + 2)[/—2—1 + 0= L_3.

Thus
Lg[xs) = [L-1,La][x3) = L1 (L — 2(x3)) + La (—=x—1 (x3)) -

42



Take |x1) = Lo |x3) and |x2) = —x1 |x3). It remains to show that |y;) and |x2) are Level 1
and level 2 states respectively. Indeed since (Lo — a + 3) |x3) = 0, we have

(Lo—a+1)L g|xs3) = (Lol =2+ L —2(—a+1)) [x3)

(L-2Lo+2L—2+ L_g(—a+1)) (x3)
Ly (Lo —a+3)|xs)
0,

where we used the quantum Virasoro algebra: LoL_o = L oLy + 2L_5. Similarly we have

(Lo—a+2)(—=L-1|x3)) = — (L-1Lo + L1(—a +2)) |x3)
=—(LoL 1+ L1+ L 1(—a+2))|x3)
=—L_(Lo—a+3)|xs)
=0.

For any n, we assume that L_,4; [x,—1) can be written as L_; [x1) + L_2|x2). Then since

1
Lfn = - [Lfla L*nJrl] )
n

so that ) |
Ly, |Xn> = EL—I (L—n—H |Xn>) + EL—n-&-l (_L—l |Xn>> .

Following similar method as in the base case, we can show that —%L,l\ Xn) is a level n — 1
state. Indeed observe that

1 1
- (Lo—a4+n—1)L_y|xn)=—(L_yLo+ L1+ Li(—a+n—1))|xn)

—3

= _EL_I (LO —a -+ n) ’Xn)
=0

So using induction hypothesis, we get

1 - -
L_y|xn) =Ly (ELn-H |Xn>) + L 1|X1) + L-2|X2)

for some level 1 state |X;) a level 2 state |Xa). It is also clear that T L, |x,) is a level 1
state. Thus define

~ ~ 1 - -
IX1) = |x1) + ELn—i-l IXn)  IX2) = [X2)

so that
Lfn |Xn> = L,1 ‘5(\1> + L72 ‘552)

where X7 and X3 are level 1 and level 2 states respectively. ]
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Physical Spurious States

In view of Lemma [3.3.12] it is sufficient to find the values of @ and D such that the spurious
states L_1|x1) and L_s|x2) become physical where |xi) and |x2) are level 1 and level 2
states respectively.

Theorem 3.3.13. Let |x1) be a level 1 state satisfying Ly, |x1) = 0 for all m > 0. Then the
spurious state |1y = L_1|x1) is physical if and only if a = 1.

Proof. ( = ) Suppose L_; |x1) is physical. Then Li;L_;|x1) = 0 as physical states |¢)
satisfy L,,|¢) = 0 for all m > 0. We get

LyL_y|x1) = (L1L1 + 2Lo) |x1)
=2Lo [x1)
=2(a—1)[x1),
since |x1) is a level 1 state satisfying (Lo —a + 1) [x1) = 0. Thus L1 L_; |x1) =0=a = 1.

(<) If a = 1 then backtracking above steps we get LiL_i|x1) = 0. To check that
L L_1|x1) =0, we proceed inductively. We have the base case. Next

LyL_y|x1) =L 1Ly |x1) + (m+1)Ly_1|x1) =0,

since Ly, |x1) = 0 by assumption and L,, 1 |x1) = 0 by induction hypothesis. Next thing to
check is

(Lo—a)L_1|x1)=0, (a=1).

Indeed
LoL_y|x1) = L_1Lo|x1) + L-1|x1)

=0+ Loalxa),
since (Lo —a+ 1) |x1) = Lo |x1) = 0. O

Next we look at level 2 spurious states. A general level 2 spurious state is

) = (L2 +vL_1L_1)[x2) -
We will show that [¢) is physical if and only if v = 2 and D = 26.

Theorem 3.3.14. Let |x2) be a level 2 state satisfying Ly, |x2) = 0 for all m > 0. Then the
spurious state |¢) = (L_o +~vyL_1L_1) |x2) is physical if and only if v = % and D = 26.
Proof. ( =) Suppose |¢) is physical, then we must have (|)) = 0 since |¢) is spurious.
Next we demand L,,|1) = 0 for all m > 0. In particular L;|¢)) = 0. We have

(LlL_Q + leL_lL_l) |X2> =0

= (L_oLy+3L_y+~yL_1LiL_y +2vLoL_1)|x2) =0

— (Ll +3L_1 + PYL—lL—lLl + 2’}/L_1L0 + 2"}/L_1L0 + 2"}/L_1> ’X2> =0
= L1 (3+4vLo+27) [x2) =0,
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where we used Lq|y2) = 0. Now since Ly|xz2) = —|x2), we get

La@B+y(=1)7+27)|x2) =0
= 3-27)L-1[x2) =0

3

So

V) = (L2 + gL1L1) Ix2) -

Next we impose Lo|1)) = 0. We have

3
Ly (Lz + §L1L1) Ix2) =0

3 3
- [L27 L_5+ §L_1L_1:| |X2> + <L_2 + §L_1L_L) Lo |X2> =0

c 3
- <4Lo + 52(3)50,0 + B [La, LIL—I]) [X2) =0,

where we used our assumption that Ly |x2) = 0. Now since

Ly, L_yL_y] = [Lo, Ly} Ly + L_y [La, Ly]
=3L1L_1+3L 114
=3(L_1Ly +2Ly) +3L 1L,
=6L_1L; +6Lg.

So we have

3
(4L0 + g + 3 (6L_1Ly + 6Lo)) [x2) =0

— (13L0 Y OL Ly + g) ya) = 0
= ¢ = 20,

where we used L;|x2) = 0 and Lg|x2) = —|x2). In free Bosonic string theory, we know that
c=n/t =D,so D =26.

(«<=) Assuming D = 26, v = 3, we can show that L;|¢)) = 0 and Le|t)) = 0 back tracking
the steps. For m > 3, it is easily proved using induction as in the proof of Theorem |3.3.13|
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Finally we need to show that (Lo — 1) |¢) = 0. To see that this is true, observe that

(Lo — 1) (L2 + ngLl) X2) = (LoLz + %L0L1L1> [X2) — [¢¥)

3 3
L_yLo+ 2Ly + 2L 1LoL1 + 2L 1L ) X2) = [¥)

3 3
Lo-Spapa i+l )|x2>—|w>

3 3 3
(L2 —|—2L 2+2L 1L 1L0+2L 1L 1+2L 1L1> |X2>_|¢>
( 2 2

0,
where we used Lo |x2) = — |x2) - O

Thus we have shown that infinite classes of spurious states of zero norm appear in our theory
when D = 26 and a = 1. Thus we have determined the boundary where positive norm states
turn into negative norm states. Thus for these values of a and D, the ghosts decouple from
the theory as infinitely many zero norm states appear in our theory. There are non-critical
string theories free of ghosts for a < 1 and D < 25 but we will not pursue it here. We
conclude the covariant quantisation of closed strings with the result that the spectrum is
well defined and ghost free in the critical dimension. We will arrive at the same result in the
next section using another quantisation scheme.

3.4 Lightcone Quantisation

In lightcone quantisation, we begin by solving the constraints first and separating the phys-
ical degrees of freedom. Before we begin, let us discuss about reparametrizations, conformal
transformations and Weyl rescaling.

Given any reparametrization of the worldsheet, it corresponds to choosing a different co-
ordinate chart for the manifold. This has no physical consequence as all points, curves
remain same on the manifold (worldsheet). Thus any diffeomorphism automatically pre-
serves circular and hyperbolic angles. On the other hand coordinate transformations which
transform the metric as

9uv — QQ(U)gmx(U)
are called conformal transformations. These transformations preserve angles (circular as well
as hyperbolic). Another version of Conformal transformations are maps between manifolds.
Let (M, g) and (N,g) be Riemannian manifolds and ¢ : M — N be a smooth map. Then
¢ is said to be a conformal map if the pullback ¢*§ = Q%¢g for some smooth function €.
Writing ' = ¢(x) we see that

~ 02" ox™
G () Do oo *()Gpo-
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Thus angles are preserved. In particular if M = N and g = ¢ then

ox'* Oz
/ — (2
g/“/ ($) axp axo Q (x)gpa
which are usual conformal transformations. Weyl rescalings on the other hand, are com-
pletely different. They are not coordinate transformations. These do not act on the
parametrizations but act on the metric. Since the metric is only scaled thus angles are
preserved.

3.4.1 Residual Gauge Freedom: Lightcone Gauge

We have already fixed a gauge i,e. chosen two reparametrizations and used Weyl rescaling
to fix the metric to 7,,. But we have some residual gauge symmetry. Indeed consider a
reparametrization 0® — ¢* = 0%(o) such that the metric changes by 1.5 — 7,8 =
Q?(o)n,,. If at the same time, we perform a Weyl transformation 1,5 — 7,5 = Q72(0) 1,
then we see that the action is invariant. This is the residual guage symmetry and these are
exactly the conformal transformations. Thus we see that

“conformal = diffeomorphisms x Weyl”.

This also shows that the guage fixed Polyakov action has worldsheet conformal symmetry.
We will now quantise this system using lightcone coordinates. Introduce

+ -
o +o o
O'j:——T:l:(T:}T—_—Q , O =

The metric is given by

ds® = —dr* + do* = —i (do + dcf)2 + i (do™ — do’)2

1 1 1 1 1 1
— —Zda+2 — ZdU_Q — §d0+d0_ + Zd(jJr2 + ZdJ_Q — §dcr+da_
= —dotdo™.

So a reparametrization 6t — ot (0%) and o~ — o (07), ds*® simply changes by
scaling. Indeed
do™ do~ dot 0o~
d82 = —Td5+7d0_ = ———~d5+d5
dot do~ oot do
Note that the reparametrizations are single variable. We would like to fix the remnant gauge.
The choice that we will make here is called lightcone gauge. Introduce
1
X=—(X"+£XP").
ot )
Such a choice breaks Lorentz invariance in classical as well as quantum theory as we have
picked a special time and space part while Lorentz transformations mixes space and time
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coordinates. So when we quantise our system, we will look for conditions that restores the
Lorentz invariance. It is now easy to see that

D-2
ds* = —2dX*dX~ + Y (dX7)".

i=1

So the metric nyy =0=7n__andn,_ =n_, =—land n; =1 V i=12...,D—2
and all other elements vanish. So any vector A* = (AT, A=, A") is lowered as

A/L = (_A*> _A+7 Az)
and the dot product is
A'B,=—-AtB_ — A"B, + A'B".

Solution of the equation of motion is

Xt = X} (%) + X7 ().
To see this, note that

X0 = X () + X (o)
so that

Xt = o (X0 X0 = S XD (o) + X () + X () + XE (o)

=X/ (0+) + X3 (0_) .

>

We now fix our gauge. Note that X satisfies the wave equation 0,0_X" = 0. Now note
that a reparametrization 6 =% (07) and 6~ =~ (¢7) corresponds to
. o"+0- _ ot-—0

T=—7"—, 0=

2

But 7 has to satisfy 0,0_7 = 0. So we can choose

- Xt

T = *

o’'pt
This is called lightcone gauge. The coordinate X~ still satisfies the wave equation
8+87X7 - O

The usual solution is

X =X, (6")+ Xz (07).
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Let us look at the constraints in lightcone gauge. We had the constraint (9, X)* = 0 =
(0_X)? with X = (X, X, X). So we get
D—2
(0, X)* = =20, X0, X+ Y _ (9, X7)
i=1
D—2
(0-X)?=—20_X"0_X*+ > (0-X7)*
i=1
Since - N B
0.x" =M _p x+ ( =TT,
2 2
the constraints (9, X)* =0 = (0_X)? gives
D—
0, X =
B (3.4.1)

-2
1 2
L 9
=1
Thus we see that in lightcone gauge the D — 2 scalar fields determine X~ upto an additive

constant coming from integration. Indeed we see that if we write the mode expansion of

Xi/r

/ /
X, (a*) = %:1: + %pﬂﬁ + 4/ % Z %&nemﬁ
1 jo
X_( _) = ix +—p ot +i g —oz_e_”w

n;éO
then z~ is coming as the integration constant while all other terms p~ and «,, a;, is deter-
mined in terms of &’ a! and p*. Indeed if we write

/
8+X—\/72~ ot with  ay = %p’

nez
o o o
0_Xp =1\ = Zan M7 with o = 3}9_.
nez

Then substituting (0, X )2 using Fourier modes of X' in ([3.4.1)), we get by comparing coeffi-
cients of =" that

a, = ¢—p+22@ -m®m

meZ 1=1

meZ 1=1
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For n = 0, we get two expressions for p~:

o/pi 1 D=2 o . ) ) 1 D=2 o . .
5 = 2t ZZI (EPW + Z o/noz;> = o Z (5]9110Z + Zo/noz;> :

n#0
Using p* = (p*,p~,p') we see that

M? = —p/'p, =2p"p = > pip.

Using the above equality for “/Tpf above we get

D-2 D-2
M? = i o' ol = i a'al
- n-n o —n-nd
i=1 n>0 i=1 n>0

where we used

The oscillators af, a*, are called transverse oscillators. These are physical excitations in the
sense that knowing o’ and &/, determines all other modes. Thus the most general classical
solution can be determined in terms of 2(D — 2) oscillator modes o, &, and a bunch of zero
modes p*, p’, x*.

3.4.2 Quantisation

The usual way of quantisation is to compute the classical Poisson brackets and use Dirac
prescription. As we did in covariant quantisation, using the Poisson brackets, the following
commutation relations are obvious:

N 342
[aiw OZZ,J = néijdm—i-n,o = [a:'m &in] . .
The ground state is again |0;p”) with |0) being the string. To build the Fock space, we
impose
Pl pt) = p0sp") @ l0p") =0=0;, [0;p"), ¥V n>0 p=1,2,---,D—1
We act with o’ ;" ;n > 0 to build the Fock space. Notice that ¢ runs only over spatial
index ¢ = 1,2--- ;D — 1, so the theory does not have ghosts by construction. Its time to
impose the constraints. As we had in covariant quantisation, level matching with normal
ordering implies



where now the number operators are

= b
N:§ZZO‘;O‘§1 and Nzézz&&
i=1 n#£0 i=1 n#0

and a is again the normal ordering constant which we again fix by requiring that the spectrum
be Lorentz invariant. Note that

D—-1
IPITIEESY [z o0+ Y aina:;]

i=1 n#0 i Ln>0 n<0
SIS z[zw |
i n>0 7 n<0
= E E Ot_nOén—l— E n,
i n>0 n>0

where we used the commutator [a;, ai_n} = n. The last sum is divergent but we need to
extract physics out of this divergence. The result is the appearance of Casimir force. We
will do this in two ways.

UV Cut-off e « 1
Write

Now

8{ 1 ]_ ¢ <1—5+§+O(53))
Oe |1 —e—¢ (1—e2)? (1_1_}_5_%4_...)2
<1—5+§+O(53))
52(1—§+...)2

_ 1 t—5+8—2+0(53) 1+2——2—2+352+O( %)
€2 2 2 314

1 g2 2 3

— 142 —2_2
52(+2 g? 65—|—45+O( ))
1 1

:?—E—FO(S).

The 8% must be renormalised away. After renormalising and taking ¢ — 0, we get the odd

result
Z n=—— (3.4.3)
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Zeta Function Regularisation

The Riemann zeta function is defined as

=1
((s) = —, seC.
nS
n=1
The series defining ((s) converges absolutely and uniformly on compact subsets of the half
plane {s € C: Re(s) > 1} and hence ((s) is holomorphic on this half plane. Moreover, the
Riemann zeta function admits a unique analytic continuation to the whole s—plane. To be
precise, Riemann in 1859 proved the following integral representation of the Riemann zeta

function:
1—s > dx

7S/ (g) C(s) = s(s;—l) + /1 T W) (:708/2 +o'7) = (3.4.4)

where

W(l’) _ i en27rx
n=1

and I'(s) is the gamma function. The integral on the right hand side of (3.4.5)) converges for
all C. So this integral gives an analytic continuation of {(s). Indeed putting

S

£(s) = s(s — )=/ (2

) <),
we see that £(s) is an entire function and satisfies
§(1 —s) = &(s).
From the fact that £(s) is entire, we see that ((s) (analytically continued) has simple zeros at

s = —2n, n € N corresponding to poles of I' (g) Now at s = —1, we have that {(—1) = £(2).
This implies

oml/2T (-%) C(—1) =277 (1)¢(2)

So we see that both of the computation gives same result.

3These are called the trivial zeros of ((s). The Riemann hypothesis says that all other non trivial zeros
of {(s) lie on the line Re(s) = % This is still an open problem and a million dollar problem announced by
the Clay Mathematical Institute.
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3.4.3 String Spectrum

With the above regularisation, the level matching condition becomes

rD—2
4 D —2] 4 D -2
M? = — 2 ——— | == [|N: = ——
o |22 2 = =5 o { 24 1
Li=1 n>0 .
4 2 4| ~ D-2
4 S ya o D2 :E{:N:_T]
Li=1 n>0 i
We also identify the normal ordering constant as
D -2
a=—-"
24

Let us look at the ground state |0;p*). By our definition of vacuum |0), we have
N:[0; p) = 0 = :N:{0; p*) .

So Level matching gives
w=-P=2_
- 6a/ '
These are particles weth negative mass-squared. These are called Tachyons. These are a
problem in Bosonic string theory. But when we study superstring theory where we include
Fermionic fields on the worldsheet, then these states automatically vanish. Now let us look
at excited states. First excited state is obtained by acting o’ ; and &' ;. To see this observe

that for n > 0,

D—1 oo

n’op ZZO‘ ragal, 0;p)

=1 k=1

[Z Z ol ol al + k:5ij5k_n7oo/k] |0; p)

7

= na_, |0; p")

So o’ ; and &" | give first excited states. Thus level matching requires us to act o’ ; and a_4
together. So the first excited states are o’ ;&” ; |0; p*). Mass of each of these states is

M? = 4 (1 — %) : (3.4.5)

3.4.4 Fixing Lorentz Invariance

Our states are labelled by indices 7,7 = 1,2,..., D — 1 and hence these transform as vectors
with respect to the group SO(D —2) — SO(1, D — 1) where SO(1, D — 1) is the full Lorentz

23



group. But finally we want our states to fit into some representation of the Lorentz group
S0(1,D — 1). Here we invoke Wigner’s classification of representations of Poincaré group.
From the discussion in Appendix @ﬂ, we see that if we want our states ai_l&j_ L 105 p") to
transform as some representation of the Lorentz group, then these states must be massless
as these states fit into the representation of the little group SO(D — 2) which is the little
group corresponding to massless representation. Thus implies that D = 26 which
also gives a = 1. Thus we have recovered the critical dimension by requiring that the first
excited state be representations of the Lorentz group. We still need to make sure that the
higher excited states also transform as some representations of the Lorentz invariant and we
now have no choice other than to hope that with the values of @ and D that we have chosen,
we somehow manage to embed the higher excited states into the representation of Lorentz
group. This is indeed the case. We will show this for the second excited state but one can
check that the all higher excited states fit into some massive representation of the Lorentz
group. We first note from that all higher excited states are massive with the values
of D that we have chosen. So by Wigner’s classification, all these states must fit into some
representation of SO(D — 1) as the little group for massive representations is SO(D — 1).
For N =N = 2, the states are

al ol | |0;p") a4 ]0;p*)  — Right moving
at, ol |0;pt), ', |0;p)  — Left moving.

Since o' |, a’ | commute, in the right moving sector there are a total of

%(D—Q)(D—1)+(D—2):(D—2) (#)
(D —2)(D+1)
B 2
:%D(D—l)—l

states. These easily fit into the symmetric traceless representation of SO(D — 1). Infact one
can prove that all higher excited states fit into some representation of SO(D — 1). Hence we
have recovered Lorentz invariance by fixing the dimension of spacetime.

There is one other way to explicitly check that we have recovered Lorentz invariance: We
compute the conserved charges and currents corresponding to the global Poincaré symmetry
X — A* XY + C*F of the action and require that they satisfy Poincaré algebra. Let us
begin with translations X* — X* + C*. One can compute the Noether current. It turns

out to be: .
P% = 0°X

Y S % e

41 recommend going through Appendixto understand the uses of Wigner’s classification in string theory
context.
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It is easy to see that 0, P = 0 as J,0°X,, = 0 on-shell. Next the Noether charge corre-
sponding to Lorentz transformation X# — A" X" is

I = Pp X, — Pl X,
We can again check that d,J5, = 0. Indeed we have
OatS, = (0aPg) X, 4+ Pr0uX, — (0.P)) X, — PJ0aX,
= P10, X, — PO, X,
1

- 2ma’
=0.

(0°X,00X,, — 0°X,0,X,,)

The conserved charges corresponding to J is

]\/[W:/0 doJ,.

Now using the mode expansion for X* we get

T 1 a . .
M = / dor (XU = XTV) = —— | do (XX — XV X7)
0 0

2o
— " BM 4 B
where
W = ghp” — Vph,

[e.9]

1
o - PN N T V)
EW = ZE n(a_nan arakh),
n=1

= 1
~uy__' I oy ey ey g V)
EM = —4 E - (a,nan oz_nozn).
n=1

The first piece " is the orbital angular momentum of the string while the other two pieces
arise from excited states. Classically, one can check that the Poisson bracket for M, satisfies
Lorentz algebra. In covariant quantisation, it is easy to check that M, satisfies the Lorentz
algebra but in lightcone quantisation, things are not so clear. In lightcone gauge, we must
be able to produce the Lorentz algebra i,e.

[Mpa’ MTI/] — noTMpz/ o inMm/ + npuMch o T]UVMPT.

The only bracket which is non trivial is [M*~, M?~] = 0. This commutator involves p~ and
«,, which has been fixed in lightcone gauge in terms of other transverse oscillators. A messy
calculation gives

(M=, M) = 2 Z ({% — 1} n+l {a— %D (o', ol — o al)

2
)" = n
2 D-2 1 D—2 S
- = 1 _ - - ~1 ~J _ ~7 ~1
! +(p+)2 ; ({ 24 } "t {a 24 D (0705, —al,an)



which is 0 if and only if a =1 and D = 26. This is consistent with our earlier derivation of
the critical dimension.

3.4.5 First String Excitation

The first excited states are massless representations of the little group SO(D — 2). There
are a total (D — 2)? particles (tensor product of the left and right-moving sectors) in the
first excitation. So we want to get the irreducible representations of SO(D — 2) of dimension
(D — 2)% so that each irreducible factor would correspond to an elementary particle by
Wigner’s proposal. Using the method of Young Tableau, we can prove that the tensorial
representation of SO(D — 2) of dimension (D — 2)? consists of three irreducible parts:

Traceless symmetric & Antisymmetric @ Trace (Scalar)
(D—-2)(D—-1) ] (D —2)(D —3)
2 2

Dim 1

Following the usual method of constructing field theory from representations, we attach a
tensor field to each of these representation. We get three particles.

1. G, (X) : the traceless symmetric tensor field which we will identify with graviton.

2. B, (X) : the antisymmetric tensor field. This is sometimes called the Kalb-Ramond
field.

3. ®(X) : the trace part of the tensor representations. This scalar field is called the
dilaton.

To see that these fields arise in our theory, we decompose the first excited state as follows:

. . 1 o - i 1 e
ajaly |0;p) = (Oé(_loéj_)l - —530/“10/“1) 0:9) + 0l &)y 0: ) + 5= 890k, %, 0; p
—_——— ~

),

J/

D -2 D—2«
7 . .
~~ antisymmetric trace
symmetric traceless

where (, ) and [,] are the symmetrized and antisymmetrized indices. The traceless symmetric
field G, is particularly interesting as it represents massless symmetric, traceless rank two
tensor field. We will identify this field with the metric of spacetime, the graviton because
Weinberg in 1965 [I5] showed that any interacting theory of massless symmetric, traceless
rank two tensor field is Einstein’s gravity. Later we will explicitly derive Einstein’s field
equations from this field.
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Chapter 4

Open Strings and D-Branes

In the previous chapter, we quantised the closed string and found that the spectrum contains
three particles including the graviton. In this chapter, we will quantise the open strings with
different boundary conditions.

4.1 Solving the Equations of Motion

We have already found the equations of motion of the open string subject to three different
boundary conditions in Subsection [2.2.2] As already mentioned in Subsection [2.2.2] we will
normalise the length of the string so that o € [0,7). We will now solve the equations of
motion for the first two boundary conditions.

4.1.1 Neumann Boundary Condition at Both Ends (INN)

This means that
0, Xt=0 for o=0,m.

Since the equation of motion is

0,0 X" =0,

we again have
X*o,7) =X (o%) + X5 (07)

with
Xt (oF) = 1:L’“ + o'pfot + iy o E lb?“e’m‘7+
L 2 2 n "

and

B = 1u T s 1u—in0’
X4 (o ):éx +a'plo” 41 EZEQNQ :
n#0
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+_7 ~ .
Now 0 = 25%—, so 0=0=0" =0 =17/2. Since

9, X" = % (D4 X" — X",

the condition 0, X* = 0 implies 9, X* = 0_X*. Using the Fourier expansion above, we get

o . . o N
O/p“ + 5 Z aze—zna+ _ a/p“ + 5 Z oz‘,je_”w
. n#0

n#0

o=0, o=0,7

At 0 =0, we get

\/gZ(ag—a,’;)e—m_o = a'=a" Yn#0.

n#0
So we have
XH =gt +2pMa'T 44/ o Z loz“e_”” (e_m” + em") )
2 n "
n#0

This gives

1 )
XH =t +2d'ph'r + iV 2/ Z —ake ™™ cos(no). (4.1.1)
n
n#0

We can check that the boundary condition at o = 7 is automatically satisfied. Again we can
check that z* le p* are center of mass position and momentum of the string. Constraints are

(0,X)*=0=(0_X)*.

With the given Fourier expansion, we still have the same classical constraints

1
L,, = 0 where anékezzan_k-ak Vn € Z

where now off = v/2a/p*. The Poisson bracket for o/ are still the same.
{om, antpp = —imi Omno,  {2", 0"} pp = 0" (4.1.2)
Virasoro algebra is also the same
{Lp, Ly} pp. = —t(m — n)Lytn.

The Poisson bracket for the Fourier modes and the Virasoro generators remain the same.
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4.1.2 Dirichlet Boundary Condition at Both Ends (DD)

We impose 0X* = 0 at o = 0,7. This means that X* = 0 at 0 = 0,7 V 7. Suppose
XH0,7) = 2f and X#(m,7) = x/. The constraint is the same. We can still write

X0 = XY (o) + X5 (o).
where

1 ! 1. .
Xt (o) = Ex“ + pla/o™ + iy 5} Z Eaﬁe inot

n#0

1 ! 1 N

Xh(o7) = 51:” +ptao” + iy % Z ﬁaﬁfbe*”w :
n#0

But the boundary condition implies

/ 1 .
X*M0,7)=ab = a2 +2p“0/7'+i1/%2— (ab +ab)e ™"
n#0 n
=p'=0, 2=z and a,=—ak

But the second condition X#(w,7) = 2/ is not satisfied. Thus the general solution must
have the form

H_ M 1 )
Xt =ah + e PR g —ake " sin(no). (4.1.3)
T n
n#0

This is gotten by assuming the forms of X and Xy as
Xt (oF) = 1:1:'“ +prd/ot +iy/ o Z lb?“e*m‘7+
L 2 2 Lap "
n#0
1 o 1 o
B =\ _ o ) — N = M ,—ino
XR(O')—QCL’ pra’o —i—u/QZnane ,
n#0
so that

[ 7 1 ) o
)(‘u((f7 7') =x* 4+ 20/]?”0' ) % E - (&gemcﬁ' + O[;;e—mcr ) .
n
n#0

Then X#(0,7) =zf = z* =z and a# = —ao* and X*(7,7) = z{ implies

! 1, . . .
zh + 2a'phT + iy f B E — (akte™™T — ahe™™) e T = 1
n
n#0

= xf + 2d'pM'r = off
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. .. . Pyt . .
There is no center of mass momentum and the center of mass position is 5™ as is easily

computed:
L 7T 1 H_ M 1 I I
q“:—/ doz* (o, 7) :xg—l-——xl o —7T2—|—0:—$0+$1.
T Jo T T 2 2

Next, we find the classical constraints in terms of Fourier modes. The constraints are

(4 XM =0=(0_X")*.

We have p
6+X“ _ x — \/—Za#_a —zn T— o’) o e—in(T+0))
n#0
_ - .’L'O \/>Z O{M —inot
n#0
_ / Z C(uefzna :
ne”
where p p
P S
040 =
2/ W
Similarly
ol
0.5 =~ [T S apeir
n#0

with same ag. Thus constraints are

1
:§Za"—k'ak‘20 Vn € Z.

keZ

All Poisson brackets remain the same.

4.1.3 Neumann at ¢ =0 and Dirichlet at 0 =7 (ND)

This means
0,X!=0atoc=0,7and X* =z" at o =7, 7.

As usual
X0 = XY () + X ().
where

X“( )—%x“-i-paa +z\/72 “_Z”"+

n#0
— 1 ! _— . o —ino
Xg(a):éx“%—p“aa +1 Ezﬁage :
n#0
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The condition 9,X* =0 at 0 = 0 = a# = & as in previous case. Next

Xt=alato=nm =p'=

/ 1 )
i1/ %2 Z ﬁaﬁe_"” cos(nm) =0 V .

n#0

This is possible only if cos(nm) =0 Vn =n € Z+ % So the sum must actually run over
half integers. So we get

1 )
XH(o, 1) = 2" + V20 Z —ake " cos(no). (4.1.4)
n

neZ+3

One can again show that the oscillators, which are now half integral, satisfy the same Poisson
bracket. It is easy to check that

/ . 1 .
0L XM =4/ % Z ozﬁe_mgi = (8iX“)2 = 0/5 Z Z oy Ocre_mgia

n€Z+% n€%Zr€Z+%

so that the classical constraints are again the same with the same expression for the Virasoro
generators:

1 1
L”:§ Z o, o, =0 ‘v’neiZ.
T€Z+%
4.1.4 Dirichlet at 0 =0 and Neumann at ¢ =7 (DN)
Following similar process as in Subsection we get that

1 .
XH*(o,7) =a" + V2 Z —abe™" sin(no), (4.1.5)
n

n€Z+%

and
!

0L X = j:\/% Z a‘,fbe’m"i.

n€Z+%

This gives us the same classical constraints. The Poisson bracket also remains the same.

4.1.5 NN for 0 < pu <pand DD for p+1<u <D —1: D-Branes

This means that

0,X*=0fora=0,---,patc =0,7
xX0,r)=¢, X'(mr1)=d" forI=p+1,---,D—1.
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This fixes the endpoints of the string in the D — p — 1 directions and hence is constrained
to move in the (p + 1)—dimensional hypersurface. This hypersurface is usually called a Dp-
Brane. So a D0O-brane is a particle, a D1-brane is itself a string, a D2-brane is a membrane
and so on. In particular if p = D — 1 then we get to NN case which means all space is
a D-brane, that is we get space filling D-brane. Combining Fourier modes of NN and DD
conditions, we get

1 )
XH*(o, 1) = a* + 2pM'1 + iV 2/ Z —ake ™ cos(no), u=0,1,---,p
n#0 n
1 ,
o+ \/20/2 —ake " sin(no), pw=p+1,---,D—1.
n#0 n

One can also work out the Poisson bracket and show that they remain the same.

(4.1.6)

dr — om
X*o, 1) =+ ‘

4.2 Quantisation

We can again quantise the open string in the cannonical way or using path integral. Here
we will discuss the cannonical quantisation. As usual, it can be done in two ways. We
will quickly discuss covariant quantisation but the lighcone quantisation will be discussed in
some detail.

4.2.1 Covariant Quantisation

Using the classical Poisson brackets (4.1.2)), we impose the commutation relations
[zt p"] = in"",  [ak, al] = nominon®”, (4.2.1)

with all others being zero. Construct the Fock space as usual from ground state |0; p*). We
will again encounter ghosts which we can again get rid of by choosing a and D as in closed
string case by the same spurious state analysis. Infact in open string case we only have one
set of Virasoro generators
L, = Zanfr C Oy,
T

where the summation index and mode index run over integers or half-integers depending on
boundary conditions whether NN, DD or DN, ND. The quantum Virasoro algebra is again
the same i,e. the central extension of the Witt algebra. Thus the constraints are again
imposed as

L,|phys) =0
(Lo — a) [phys) =0
where a is the normal ordering constant. The number operator is

o
_ iz i a
N = E (a,namn + a_nam) + E al g,

n=1 T‘EN(H-%

62



where p denotes NN direction, ¢ denotes DD direction and a denotes the DN and ND
directions and Ny = NU{0}. Again using the spurious state discussion we have a = 1, D = 26
for our spectrum to be ghost free. Lorentz invariance is manifest and the the normal ordering
constant drops out of any expressions involving angular momentum.

4.2.2 Lightcone Quantisation

As usual, we go to lightcone gauge by introducing
1
X*=—(X"+£XxP

and choosing Xt = 2a/p™r. It is easy to see that X* has to satisfy Neumann boundary
condition (due to 7 in X ). The X oscillators are all zero except the zero mode

ag = V2a'pt.

As in closed string case, the oscillators of X~ is determined by the transverse oscillators
upto a constant z~. Let us now impose the commutation relations

la=.p") = =i, [¢".p] =id"V
[afl, aZ,J = néij6n+m70.

(4.2.2)

We can now construct the Fock space from vacuum |0; p*) by acting o’ , m < 0 on |0; p*).

m?

The spectrum is manifestly ghost free. Let us look at the ordering ambiguity. We have

0
Lo —al = -
0— Qg = a_, -y, = a,, - oy, + a_, - Q,

n#0 n>0 n<0
:Zan-an—f—Z(an'an_n(D_Q»
n>0 n<0
(z an+Ezn)
n>0 2 n>0

Now the sum above can go over integer or half-integer depending on NN, DD or ND, DN
boundary conditions. In integral case, the last term is regularised using zeta function:

- 1
gé;Tl::——Ii.

If the sum goes over half integers then the last term is regularised using Hurwitz zeta function.
The last sum can be written as

Z n:i<n+%>
n€No+3 n=0
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The Hurwitz zeta function is defined as

> 1
((s,) =) et qr

n=0

and is holomorphic for Re(s) > 1 and Re(gq) > 0. It can be analytically continued to the
whole s-plane for a given value of ¢ in the domain of definition but we do not need the
complete sophisticated machinery here rather a simple trick here will do the job. We note
that

S S _ - 1
2 e ;(W]
=2° (C(s) —27°¢(s))
— @2 - 1)(s)

Thus, using the analytic continuation of the Riemann zeta function, we get

1 1 1
¢ (—1, 5) = —§C(—1) = o0

We have five boundary conditions. In general we can have a mix of all those boundary
conditions. Let 7; be NN and DD directions and i, be ND and DN directions. Then we have

< . 1 1
Lo — a3 =2 Za‘jnail,n +2 Z a’? o, n + Dy <_E> + Dy (ﬂ)

n=1 TLENO+%

where Dy + Dy = D — 2 where D, denotes the total number of NN and DD directions and
Dy denotes the total number of DN and ND directions. We recognise the last two constant
terms as the contribution to normal ordering constant. In terms of the number operator, we
have

Ly —a=aj+ ZZozjnozil,n +2 Z a’? i, + Dy <_E> + D, (ﬂ)

n=1 nENoJr%
) 1 1

If we consider the first string excitation o', |0;p*) where n =1if i = i; and n =1 if i = i,
then
NaL, [0;p") = nal, 05p").
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Next the mass-spectrum is calculated using the constraint
(Lo — a) |phys) = 0.
We now need to find an expression for a2. Indeed, note that in the DD directions,

1 o) —af AXH
ap = L0 . AXFi=af — ol
2/ T 2a'T

where AX is the string length in the DD direction. In the NN direction,
af = V2ap",

and there are no zero modes in ND and DN directions. This implies that

AX \? AX\?
2 _ 2 !/ 2 — _2 /M2 2 / )
o ap” + i o + 2« e

Using the expression for (Ly — a) from previous calculation, we get

D, D AX 2
ON — 24 22 900/ M? + 24/ —0
12 24 2mal (423)
D—2 D, AX\? -
— 'M?=N-—-—"—" 4+ =44
“ 24 16 ¢ (2m'> ’

where N is the number of states in the physical excitation. Thus we see that any physical
excitation has to satisfy the above mass-shell condition. Let us explore the origin of the
extra term AX. Note that we have

AX '\’
af = —2a/M? + o (20[%) :

The extra term has natural physical interpretation: it is the mass of the string stretched
between two branes.

4.2.3 String Spectrum

Let us start with NN boundary conditions. The ground state is |0; p*) and the mass spectrum
gives
D -2
24/
So the ground state is Tachyonic. The first excited state is

M? =

o 1105 ")
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which transforms as a vector representation of SO(D — 2). Again Wigner’s theorem implies
that this state is a massless representation. Thus we get
D -2

1- =2 =0= D =26
24

We can go on constructing the higher excited states and show that D = 26 forces all of them
to be massive representations of the Lorentz group. At level n, the mass spectrum is

/M =n—1

and at level n, the representation includes a symmetric tensor of rank n (this comes from
Young Tableau method which we shall not describe here). This state corresponds to the
maximum spin n of this excitation. Let us pause and prove this. For each spin component,
we will produce a level N state and show that its spin eigenvalue corresponding to the
particular component is N. To make this explicit, we first recall the spin generators

oo 1 _ o 1
E“”:—iZ—(ofi ap —apak), EW=—iY —(a",a; —ayak).

n n n —n“n
n=1 n=1

We will distinguish between open and closed strings. In lightcone quantisation, the relevant
spin generators are £ and Fj;; for 1 < i,j < D — 2. In closed string case, the state
corresponding to the spin component E% and E¥ is given by

.. . 3 . N i i N
07 = (a4 +ial ) (@', +ialy) [0;p").
Now observe that

EVQY = (a', + i&{l)N (—1) Z% (o', ol — o al) (o' + ioﬂ;l)N 10; p)
n=1
= (@, +id,)" (~i) (o' 0] — o y0d) (ot +ia? )" 0:p"),

7 ,al) commutes with o’ | +ia’; VYn > 1. Now we

—-_nn

where we used the fact that (o', a) — o
have

[0l 10f —aljal, ol +iad,] = oty [of,al )] +ial, [of, ol )] — ol [al, aly] —ied, [af, 0]
= a0 +iat, — ol —ial 69
CJilaly iddy) i
o if i = j.
So assuming ¢ # j, we get
5909 = (@, + i) (1) (alsod — o) (o +1a2) " 0,
= (gi—l + i&j—l)N (—9)(iN) (ai—1 + iaj—l)N |0; p**)
= NQY.
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Similarly EUQE = NQU. In case of open strings with NN boundary conditions:
EY (0/—1 + iOéj—l)N 0;p) =N (0/_1 + 20‘j—1) 10; ) .
Thus the maximum spin at each level is
Jmax = M.

Hence we have
Joax = &/ M? + 1.

If we plot Juay verses M? at each level, we get a straight line with slope /. This is why o
is called the Regge slope. All states at a given level satisfy

Jmax < &/ M? + 1,

and since J and M? are quantised, all states lie on straight lines with the Tachyon lying
on the leading trajectory. These lines are called Regge trajectories. Regge trajectories are
observed in nature both for Mesons and baryons.

We now consider Dp branes i,e. NN boundary conditions in p+1 directions and DD boundary
conditions in D — p — 1 direction. There are two cases to distinguish.

One Dp Brane
In this case, we have
XH0,7)=c" = X"(m,7) p=p+1,...,D—1.

Thus the ends of the string are constrained to lie on one Dp brane. The ground state is now

defined by ,
a;|07pu>:07 n>07 22172ap_17p+177D_1

Note that the string momentum p* is actually only in p + 1 directions. The SO(1,D — 1)
Lorentz symmetry is broken to the subgroup SO(1,p) x SO(D — p — 1). This means that
Lorentz symmetry on the brane still holds while in the spacetime, the brane is like a “defect”
wall. Again Lorentz invariance requires D = 26 and a = 1 as we can readily see by looking
at the mass spectrum of first excited state. To be explicit, the first excited states are
o' 1 ]0;p*) for i = 1,2,...,p — 1 which transforms as a vector representation of SO(p — 1)
while the transverse modes o’ |0; p#) transforms as a vector under SO(D —p—1). But since
SO(p—1) x SO(D — p —1) is the little group for massless representation of the “effective”
Lorentz group SO(1,p) x SO(D — p — 1, the first excited state must be massless to preserve
Lorentz symmetry. Now using the mass-shell condition , we get D = 26 and a = 1.

As the first excited state has maximum spin 1, the states o', |0;p*) for i = 1,2,....p—1
are gauge fields as is known from quantum field theory. We introduce a gauge field A;, i =
0,...,p and its quanta represents spin 1 photons. The transverse oscillators

ol 10;p"), IT=p+1,...,D—1
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These transform as scalar representations of SO(1,p) and hence we introduce D — p — 1
scalar fields ¢/. These ¢! have physical interpretation of fluctuations of the Dp brane.
This suggests that Dp branes are themselves dynamical as we will see later. Although ¢’
transform as scalars under the SO(1,p) Lorentz group of the Dp brane they transform as
vectors as representations of the SO(D — p — 1) rotation group. This appears as a global
symmetry of the brane world volume. One can also consider ¢! as the Goldstone Bosons
associated to the spontaneously broken translational symmetry.

Two Dp Branes: String Stretched Between Two Branes

In this case X*(0,0) = aff # af = X*(m,0), p=p+1,---,D — 1. From (4.2.3) we see
that there is a shift in mass spectrum:

Q/MQZN_E+Q/('T§L_IS>2

24 2o’

Thus the states o’ | |Az*, p’) are no longer massless. In general we can stack N such Dp
branes on top of each other (that is the branes are coincident) and denote the massless vector
excitation as

ail |k ) ¢ ) pl>

where k, ¢ are labels which encode the Dp branes on which the endpoints of the string end.
These are called Chan-Paton labels. The resulting N? states can be embedded in an N x N
matrix and expanded in a complete set of N x N matrices

k7£7p2>:)\%€|aﬂpz>7 CLE{l, 7N2}7

where \¢, are called Chan-Paton factors. The resulting fields T}, ((bI )f and (A“)f can be
fit into Hermitian matrices. Here T is the open string Tachyon. The diagonal fields arise
from strings ending on same brane. We will later see that (Aa)lz are identified with U(N)
Yang-Mills gauge Bosons and (gzﬁf )]; transform in the adjoint representation of U(N).

4.3 Discrete Diffeomorphisms: Oriented verses
Nonoriented Strings

Until now, we dealt with oriented string theories, that is we have not considered reparametriza-
tions of the form

oo =m1m—0

T—=T =T

Such a reparametrization respects the periodicity of closed strings and maps the two ends
of an open string to each other and reverses the orientation do A dr of the worldsheet!] The

Lorientation of a manifold can be defined in terms of a top form on the manifold.
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above discrete diffeomorphism can be implemented by a unitary operator €:
QXH (o, 7)1 = X7 — 0, 7).

Since the same operation twice is trivial we demand 9% = 1. So that the only eigenvalues of
) can be £1. These actions can be expressed in terms of the oscillators. For closed string
we substitute

o 1 oy
Xt(o, 1) = 2"+ o'p't + iy = E - (o/‘e’”“’ ate e ) )
(o,7) + o'ph'T + 5 2 i +ah

Also the length of the string was normalised to 27, so that the condition now becomes
QOXH (o, 1) = XH(2r — 0, 7).

This gives

Qo =ar, QarQ ! =k
For open string, we need to differentiate between different boundary conditions. Using similar
calculation as for closed strings, we get the following:

e NN boundary condition: Qa#Q~! = (—1)"ak.

e DD boundary condition: QakQ~! = (—1)"*'at  Quf, Q7" = 2f,

)

e ND-DN boundary condition: QQZ’JZF\%DQ_I = z'(—l)"az’f%N.
We need to fix the action of Q on the ground state. It turns out that Q|0; p*) is determined
upto a sign which is fixed by the so called Tadpole cancellation (will be investigated later).
For closed strings, the unoriented string spectrum must be invariant under left moving -
right moving sector exchange. This means that of the three massless fields, only graviton
and dilaton survives. This is called the restricted Shapiro-Virasoro model and the oriented
one is called the extended Shapiro-Virasoro model.

Let us now turn to the open strings. If  acts on the ground state with plus sign, then
the unoriented open string spectrum with NN (respectively DD) boundary condition must
consist of even (respectively odd) level number. For 2N branes stacked on top of each
other, one must also consider the action of €2 on the Chan-Paton factors. Since ) changes
orientations (Qaf Q7 = zf,) we have

Q\k, b;p") = |0k, p*)

at massless vector level. This means we only have N(2N — 1) (symmetric) surviving Chan-
Paton factors. Thus we get a massless vector of a SO(2N) C U(2N) gauge theory. If Q
acts with negative sign, the Chan-Paton labels are antisymmetrized and we get a massless
vector of a Sp(2N) C U(2N) gauge theory where Sp(2N) is the symplectic group of rank N
defined as follows:

Sp(2N) = {M € GL(2N,R) : MJM" = J}
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where
0 I
= ()
where I is N x N identity matrix. This is because the dimension of the antisymmetric
representation is

AN — (2N — 1)
2

2N(2N — 1

(2N)? - L)

} — N(2N +1)

which is equal to the real dimension of Sp(2N).
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Chapter 5

Conformal Field Theory

In this chapter, we will review conformal transformations and conformal group in detail. We
will describe the conformal transformations in /N-dimensional case but later specify to two
dimensions which is relevant to string theory.

5.1 Conformal Transformations

We have already looked at conformal transformations Let us recall the definition:

Definition 5.1.1. Let (M, g) and (N, g) be Riemannian (or pseudo-Riemmanian) manifolds
and ¢ : U — V be a smooth map where U C M,V C N are open sets. Then ¢ is called a
conformal map if the pullback * of ¢ satisfies

¢'g =%, (5.1.1)

where Q € C*(M) is called the scale factor. Here C°°(M) denotes the space of smooth
functions f: M — R.

Suppose M is m dimensional and M is n dimensional. Let (2°,... 2™ %) and (3°,...,y"})
be chart maps on U and V respectively[]. Let the components of the metric tensor be given
by

o 0

(2) Ty) =7 g 0

v\T) = ) ) v = )

In I\ Gzr” 9z Iy g oyr” Oy”

Then writing z'* = y* o ¢ and using the definition of pullback, (5.1.1)) becomes

- 0x'? 0x'° ,
Gpo (1) S B 92(m)gw,(x), ' = ¢(x). (5.1.2)

Conformal transformations between distinct Riemannian manifolds are important for many

'these charts may not cover all of U and V.
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Figure 5.1: Conformal transformation in two dimensions. It is clearly visible that this
transformation preserves angles.

applications but we will analyse the case when M = N = R"”~! and g,, = g = - In
this case, a conformal transformation is just a spacetime transformation which only scales
the metric. It is also clear that the set of all conformal transformations forms a group
under composition of maps. We denote this group by Conf(RMP~1). We would like to
determine this group for various spacetime dimensions. It turns out to be the Lorentz
group for dimensions greater than 3. In dimension 2, it is a bit more complicated and
turns out to be infinite dimensional if we look at local conformal transformations which we
will differentiate from the global conformal transformations in a precise sense. The global
conformal transformations coincide with the local conformal transformations in D > 3. We
begin by analysing infinitesimal conformal transformations which helps us get the Lie algebra
of Conf(RYP~1) immediately.

5.1.1 Infinitesimal Conformal Transformations

We will now concentrate on infinitesimal spacetime transformations and find conditions on
the infinitesimal parameter so that it is a conformal transformation. To this end, consider
the local infinitesimal coordinate transformation

ot — 't = 2t + e'(z) + O(e?). (5.1.3)

Under this coordinate transformation, we have

Tlpo oxh dxv oz find
oe’ oeP
= N + 77;10@ + npyﬁ + O (62)

B e, Oey 9
ot (W +axu) Lo,

/p /o P o
ox'P dx'” pa(éz+ai+0(€2)) (6§+06 _1_0(52))
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where in the last step, we used

Oz, Onuet oe?

OxH orh ”“”M'

If we demand that this infinitesimal transformation be a conformal transformation, then we
must have

Ny + Oy, + 0, + O(e?) = QQUWEM

which implies that
augu + aygu - f('r)n;w (514)

for some function f. To determine the function f in terms of ¢, we contract with n#”.
We get
1" (Ouew + Ove) = (@)™ Ny
= 20", = f(x)D

— f(x)= ()
Plugging this expression in , we get
Ouey + 0pe, = %(8 )N - (5.1.5)
The scale factor upto linear order in ¢ is given by
D(z) =1+ %(8 -g) + O(e?).

We now derive several relations which will be useful in later computations. Taking partial

derivative 0" of (5.1.5]), we obtain
2
0" (Ouey + Ovey) = 50”(8 © €)M
2
= 0,(0-¢)+0e, = 5@(8 -€),
where [J = 0"0,,. Further taking partial derivative 0, of above equation, we get

2
0,0,(0-¢)+00,¢, = 5(‘3“8,,(8 -€). (5.1.6)
Interchanging p <> v in and adding to the same equation, we obtain
4
(0.0,(0 - ) + D(0ey)) + (0,0,(0 - €) + D(yuer)) = Baﬂal/<a -€)
4
58#&,(8 - €)

s 20,0,(0- ) + (%(a - g)n#,,) _ %auay(a &)

= (nuO0+ (D —-2)0,0,)(0-¢) =0,

= 20,0,(0-¢)+0(0e, + 0,e,) =
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where we used ([5.1.5)) in the last step. Finally contracting this equation with n**, we get

(D—-1)00@-¢)=0 (5.1.7)
We now derive another equation for later use. Taking derivatives 0, of (5.1.5) and permuting
indices we get

2
8P6N€V + apaueu = Bnullap(a : 5)

2
0,0,e, + 0,0,6, = Enp,uau(a -€)

2
0,06, + 0,06, = 5%6“(6 - €).
Adding the last two equations and subtracting the first gives

2
20,06, = D (=1 0p + Npu0y +M,p0,) (0 - €). (5.1.8)

5.2 Conformal Group in D > 3

Let us first define the global conformal group and its algebra.

Definition 5.2.1. The conformal group is the group consisting of globally defined, invertible
and finite conformal transformations, that is conformal diffeomorphisms.

Definition 5.2.2. The conformal algebra is the Lie algebra corresponding to the conformal
group.

To find the conformal group, we first work out the infinitesimal conformal transformation
and then obtain the finite conformal transformation by exponentiating the infinitesimal ones.

5.2.1 Infinitesimal Conformal Transformations: D > 3

We begin by observing that (5.1.7)) constraints e(x) to be atmost quadratic in x. Thus the
most general form of the local infinitesimal parameter ¢(z) is

eu(®) = ay + b’ + cppxa’, (5.2.1)

where a,, b, ¢, <K 1 are constants and ¢, is symmetric in v, p : cup = €y Now since
the condition for conformal transformation is encoded only in the constants appearing in
and these conditions should not depend on the spacetime point, we can analyse the
conditions on the constants order by order.

(i) The constant term a, (Translation): This term is not constrained by (5.1.5). This
corresponds to spacetime translation, for which the generatOIﬂ is P, = —10, as is well
known.

2see Appendix [B|for details on symmetry generators and the explicit calculations of the generators of the
conformal algebra.
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(i)

(iii)

The linear term b, (Dilatation and Lorentz transformation): Plugging the expression

in (5.2.1)) upto linear term into ([5.1.5)), we obtain

2 g
bl,# + b#l, = 5 (np ba’p) Ny -
Now if we split b,, into symmetric and antisymmetric part as

bﬁw + bl/u buv — bl/u
2 + 2

then the above equation implies that the symmetric part is proportional to 7,,. Thus
we see that b, can be split in the following way

b =

b = amy, +my,

where m,,, = —m,,. If we consider the symmetric term an,, alone, then we get the
transformation 2/# = (1 4 «)x* which describes infinitesimal scale transformations also
called dilatation. The generator corresponding to this transformation is D = —iz#0,,.

The antisymmetric part m,,, corresponds to infinitesimal rotations '* = (04 + m*) ¥
with generator being the angular momentum operator M, = i(x,0, — x,0,).

The quadratic term ¢, (Special conformal transforamtion): Plugging the expression

in (5:21) into (5-1.8), we get

2
QauavcpoAxng ) (=1 0p + MO0 + 1p0) (" 0, (bpup” + CMUAIUxA))

1
= 20w = D (=8 + o0y + Nwp0p) (), + 20##/\1)\)
2 ag ag ag
= 2Cp = ) (—an op T MouC o+ MpC ou)
Thus we have
. 1
Cuvp = Mupby + Nuwbp — Mupby  with b, = 5cppu'

Thus the infinitesimal parameter is

5#(56) = (n,upbu + nuybp - nypbu)ac'/xp
=2(b-2)x, + (- 2)b,.

The resulting transformations are called Special Conformal Transformations (SCT)
which infinitesimally is given by:

' =t 4 2(x - bzt — (z - x)b". (5.2.2)
The corresponding generator is written as

K, =—i(2x,2"0, — (z-2)0,) .
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So we have four infinitesimal transformations:
e Infinitesimal translation 2'* = z# + a#, a* < 1 with generator P, = —i0,,.
e Infinitesimal dilatation 2* = (1 + a)z#, o < 1 with generator D = ix#0,,.

e Lorentz transformation 2* = m* ¥, m,, = —m,,, m,, < 1 with generator M,, =

i (2,0, — 2,0,) .

e Special conformal transformations x’* = x#42(z-b)x* — (z-x)b*, b* < 1 with generator
K, = —i(2z,2"0, — (- 2)0,) .

5.2.2 Finite Conformal Transformations: D > 3

To get finite conformal transformations, we need to exponentiate the generators with finite
parameters.

(i) Translations: let a* be a finite translation. Then it is implemented on spacetime by
the operator

T(a) :=exp (ia"P,).
Thus finite translations are given by
T(a)z" = exp (ia”P,) z*
1
— v —avaP f
= <1+a 8,,4—2!@ a 8,,8p+...)x
=o' 4+ a"d", + 0
=k + ali’
as expected.

(ii) Dilatation: let v be a finite dilatation parameter. It is implemented on spacetime by
the operator

S(a) :=exp (iaD).
Thus finite dilatation is given by
S(a)zt = exp (iaD) z*

1
= (1 + az’0, + 5042:5”8”33”8/, +.. ) !

1 2,v pSH
Eamﬁy(x o)+

1
:x“—i—ax“—i—aa%“qt...

=o' 4+ az”o", +

= %2t
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(iii) Lorentz transformation: let w,, be finite rotation and boost parameters with w,, =
—wyy,. Then it is clear that exp(iw*”M,,) € SO(1,D — 1). Then on spacetime, finite
Lorentz transformation is implemented by the Lorentz transformation operator

A", = (exp(iw™ M,y))"

v v’
and on spacetime it acts in the usual way.

(iv) Special conformal transformation: let 0" be a finite SCT parameter. To get finite
SCT transformation on spacetime, we need to compute exp(ib’K,)z* by expanding
the exponential. Observe that

P Kot = (2(b- x)a” — (z-2)b°) Oyt =2(b- )" — (z - )b
Next we have
(b’ K,) 2t = (2(b- x)2” — (z - 2)b°) 0,(2(b - x)z" — (z - x)bH)
= (2(b- 2)2” — (x - 2)b°) (202" + 2(b - w)d", — 2x,b")
=2(4(b- 2)*x" —2(b-2)(z - 2)b* — (z - ) (b - b)2")

We can go on computing higher powers of ib’K,. Adding up, we obtain

exp(ib’ K, )at =zt 4+ 2(b - z)a" — (z - z)b" + l2(4(1) cx)e —2(b- x)(z - )b

2!

—(z-2)(b-b)z") + ...
ot — (z-x)b") +2(b- )2t —2(b- x)(x - 2)V* — (x - x)(b- bzt
b-b)(x-x)*" — (b-b)(z-2)*W +4(b-x)*z" + ...
= (2" —(z-2)b")+ (" = (z - 2)V")(2(b-x) — (b-b)(x - x)) + ...
=@ —(z-2)0")(1+ 20 -x2)—(b-b)(x-z))+...)

at — (x - x)bH
T 1-20-2)+ (b-b)(x-x)

+

We thus have the action of all finite conformal transformations on spacetime. We list them in
the table below. It is clear that the metric remains invariant under translation and Lorentz

H Transformations Generators H
translation 't =t + a¥ P, = —i0,
dilatation 't = ozt D = —iz*d,
rotation 't = A ¥ M,, =i(x,0, — x,0,)
zh—(x-x)bH . v
SCT a = 172(b-z)(+(b.)b)(m-x) K, = —i(2z,2"0, — (x - x)0,)

Table 5.1: Global conformal transformations in D > 3

transformation. Under dilatation, the scale factor is 2%(z) = o?. Under SCT, the metric
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scales non trivially. Indeed using SCT transformation given in Table and (5.1.2)), one
can show that the scale factor is

O z) = (1—2(b-2) + (b-b)(x - 2))2

We know the geometrical meaning of three of the transformations that we have got above
namely translation, dilatation and Lorentz transformation. Let us see what SCT means
geometrically. First observe that

xfj-mx’ - :Uxiﬁa: -
Indeed we have
o ot — (z-x)b" (1—=2(b-z)+ (b-b)(z-x))?
-z 1-20b-x)+ (b -b)(x-x)(xt — (- x)bH)(z, — (z-2)b,)
_ ot — (z-x)" (1—=20b-z)+ (b-b)(x-x))?
1=20b-2)+ (- b)(x-x)[(x-x)=2(x-2z)(b-2z)+ (x-x)(b-b)]
A

This suggests that SCT corresponds to inversion followed by translation followed by inversion.
Moreover SCT is not defined globally. In particular, the transformation blows up at

pH

ot = — e RHPL

b-b
because the denominator 1 —2(b- ) + (b - b)(z - ) = 0 at this point. Thus to define SCT
globally, we need to compactify the Minkowski space by including the point at infinity by
a construction in topology called one point compactiﬁcationﬂ We will see this construction
explicitly in two dimensional case where the one point compactification is explicitly known
namely the Riemann sphere.

5.2.3 The Conformal Group and its Algebra

We begin by describing the algebra of conformal transformation generators.

Proposition 5.2.3. The generators P,, D, L
following algebra:

w» K, of conformal transformations satisfy the

D, P,| =1iP,
D, K,| =—iK,
[Kw P =2i (UWD Mw/) (5.2.3)
(K, M) = i (pudSy — 1p K)
[Py M) =i (pu B — 1pu Py)

(M, Myo] = i (00 Mo + 1o Mup — Mup Moo — Nve M,p)

3see Munkres topology for precise formulation
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Proof. The last two Lie brackets are standard Lorentz algebra proved in preliminary quantum
field theory course and hence we omit it here. We will prove the first Lie bracket relation
and the rest is similar. Suppose f is a test function. Then we have

(D, P, f = (—iz"0,)(—i0,) f — (—10,)(—ix"0,) f
= 2”0, 0, f + 27000 f + 0,0, f
= i(_iau)f
=1iP,f.
]

We easily see that the Lorentz algebra is a subalgebra of the conformal algebra. Moreover we
know that the Lorentz algebra is D(D — 1)/2 dimensional. The dimension of the conformal
algebra is thus

1 dilatation + D translations + D special conformal
D(D -1 D+2)(D+1
+ (T) Lorentz = (D + )2( +1)

To identify this algebra with standard Lie algebra, let us consider certain linear combinations
of the conformal generators. Define

Jw=M,,, pv=0,...,D~-1

1
Jou=5(Pu=K), p=0,...D-1

generators.

Jle:D7 JDM: (PM+KN)7 M:O,,D—l

N | —

Moreover we define J,,, = Jm, forn,m =-1,0,1,...,D —1,D.

Proposition 5.2.4. The generators J,, satisfy the following Lie bracket relation:

[Jmna Jrs] = Z (nmst]nr + nnrjms - nmrjns - nnstr) )

where Ny, = diag(—1,—1,1,...,1,1)
—_———
m,n=0,...,D—1
Proof. For n,m = 0,...,D — 1, the relation is immediate from the Lorentz algebra. We
check the Lie bracket of J_;, and Jp,. We have
1

[Jfl/w JDV] = _[Pu - KN’PV + K,,]

([P/MKV] - [Klm PV])

I S

[(—2i(ny, D — M,,,) — 2i(nu,D — M,,)]
= _inuuD = _Z-n,ulﬂjlea
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where we used (5.2.3) and the antisymmetry of M,,. The right hand side of the algebra is

v (nfluJuD + nuDJflu - nleJ;ws - 77ou7119) = _inuw]le'

Other brackets are similar. O

To identify the conformal algebra with standard Lie algebra, we define the generalised or-
thogonal group.

Definition 5.2.5. (Generalised orthogonal group) Let n, k be two positive integers. Define
a bilinear form B : R"t* x R*** — R by

n k
B(Xa y) == Z TilY; + Z Tn+jYntj,
i—1 =1

where x = (z1,..., T, - Tnik), Y = Y1y s Yns - - - Ynsk) € R Define the set O(n, k) as
the set of matrices which preserve the bilinear form B:

O(n, k) i= {A € GL(n + k,R) | B(Ax, Ay) = B(x,y), ¥ x,y € R™},

where GL(n + k,R) denotes the set of all invertible real matrices of size (n + k) X (n + k).

If we write
1, = -1, 0

where 1,, is the n X n identity matrix, then it is easy to see that
O(n, k) = {A € GL(n+k,R) | AT1,,A = ]ln,k} )
O(n, k) is called the generalised orthogonal group. We also define
SO(n, k) :={A € O(n, k) | detA = 1}.
Thus, we identify the conformal algebra with the Lie algebra so(2, D — 1) of SO(2,D — 1).
In general if RPY denotes the Minkowski space with metric 1,,, then following the same

procedure, we can get the conformal algebra and the conformal group of R”4. Thus we have
the following theorem.

Theorem 5.2.6. For Minkowski space RP? with dimension D = p + q > 3, the conformal
group is SO(p+ 1,q + 1).

5.3 Conformal Group in D =2

We work with Euclidean metric but everything can be formulated in Lorentzian signature
equally well.
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5.3.1 Local Conformal Transformations

In two dimensions, let (2°, 2!) be the coordinates on the plane. Under a spacetime transfor-
mation z* — w*(x) the metric tensor transforms as

owt\ ([ ow”
Ny ~uv — af
g — g (w) (aza)(azﬁ)g
Since ¢, (w) = Q*(2)g,,,(2) under conformal transformations, thus for various u, v we get
ouw'\?  [ouw"\’
20, _ _
Pla) = (a_) * (a_) -y =00
ow'\? ow'\?
2 = _— _— —
Q(x)_(azo> +(3Z1) ’ w, v 1

ow® ow'  ow® ow!
= 920 920 + 0z1 9217 (1,v) = (1,0),(0,1).

(811}0)2 ((971)0)2 ((9?1)1)2 (811}1)2
029 oz! 020 0zt
(5.3.1)

ow® ow'  ow® dw!

0

Thus we conclude that

+ =0,
020 020 0z' 02t
Second equation of (|5.3.1)) gives
%—2’3_ %—ﬁ_)\:ﬁwo_)\ﬁwl ow’ | ow'
Bup — fur 020 Tzt 920 T 0207

Substituting this in first equation of (5.3.1)), we get

ouw'\?  fouw"\® o, fouw'\?  [ouw")® )
(a_> +(a—) =A (a—> +(a—) — =1

Thus we obtain two other conditions which are independently equivalent to ([5.3.1)):

ow  ow®  ouw’ ow?

920 9217 920 9! (5.3.2)
or 1 0 0 1

ow ow ow ow

920 0217 920 92 (5.3.3)

(5.3.2]) resembles the Cauchy-Riemann equations for holomorphic functions. On the other
hand, we define antiholomorphic functions using ([5.3.3). To make this explicit, we make a
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transition to complex coordinates using the change of coordinates given below:

z2=241izt, z=2"—iz!,

1 1
o_ * - 1_ L5
z —2(2—1—7:), z 22,(z z).

1 (5.3.4)
8z:§(80—i81), 30282—1—82.

1
0; = 5(80+z'81), O =1i(0,—0).
In terms of the coordinates z and z, we have

1
ds* = (d2°)* + (d2")? = (= + dz)* — ~(dz — dz)? = dzdz.

1
4

So in the metric tensor in complex coordinates is

0 1 0 2
’U'V: 2 fr—

where the index p, v run over z,z. With this notation, if we define
w(z,z) = w'(z, 2) +iw'(z, 2),

then implies that d;w(z, z) = 0 and implies that 0,w(z, z) = 0. This means
that that the function w(z) and w(Z) are holomorphic in some open set of the complex
plane. Thus conformal transformation in two dimension amounts to a holomorphic change
of coordinates:

s = f(2), 5 ()

where the two transformations result from the two equations and but in both
cases the change of coordinates is holomorphic. Conversely, if we have a transformation
z — f(z) for a holomorphic function f in some open set of the complex plane, then the
Euclidean metric dzdz on] C transforms as

af of

dzdz — &gdzdz,

from which we see that the metric transforms conformally with scale factor %‘2. An im-
portant point to note is that we require holomorphicity only in some open set, which means
that the conformal transformations we have obtained are local. Thus we have proved the
following theorem.

Theorem 5.3.1. The group of local conformal transformations in dimension two is isomor-
phic to the group of all holomorphic functionsﬂ in some open set on the complex plane and
hence is infinite dimensional.

4induced from the Euclidean metric dz? + dy? on R2.
5the set of all holomorphic maps is a group under usual composition of maps.
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Proof. The isomorphism is explicit from our discussion above. The dimensionality follows
from the fact that the set of all holomorphic functions is infinite dimensional. To see this,
note that any complex function f holomorphic in some open set admits a Laurent expansion:

f(z) = i a,z", a, € C.

n=—oo

Thus we need an infinite number of parameters, namely the coefficients in the Laurent
expansion to specify a holomorphic function. O

5.3.2 Infinitesimal Generators: The Witt Algebra

Any infinitesimal conformal transformation can be written as
z— 2 =z+4¢(2), z—7Z=z+2(2),

where |e(z)| < 1. Since €(z) and &(Z) are holomorphic in some open set, we can write its
Laurent expansion around O:

where the infinitesimal parameters ¢, and &, are constants defining the Laurent expansion.

Let [,, and [,, be the generators corresponding to the transformation z — z — £,2"! and
Z — Z — £, respectively. Then we havd|
l, =—2""9, and [, =—-2""0.. (5.3.5)

Thus we have infinite number of generators for infinitesimal conformal transformations in two
dimensions. Thus we conclude that local conformal transformation is infinite dimensional.

We now calculate the algebra of the infinitesimal generators. We have

I, L] = 210, (2710.) — 210, (*+10,)
= (n+ 1)z™" 19, — (m + 1)zm "+,
— —(m i n)2m+n+1az

= (m—n)lynin-

Similarly we have

[lm, ln] = (m —n)lmin,

Ssee Appendix [B| for explicit calculations

83



and as expected
A

Thus the algebra of infinitesimal generators is

[lma ln] = (m - n)lm+n7 [l_ma l_n] - (m - n>l_m+na [lma l_n} =0.
The commutation relation satisfied by the generator [, and [, is called Witt algebra. Thus the
algebra of infinitesimal generators of conformal transformations in two dimensions consists
of two copies of the Witt algebra as subalgebras.

Remark 5.3.2. We may identify this algebra as the classical Virasoro generators that we
obtained when we imposed the classical constraints on the string. We also saw that the
quantum Virasoro algebra involved an additional term called the central charge. We will
rederive the quantum Virasoro algebra in next section.

5.3.3 The Global Conformal Group

We now try to extract the subalgebra of the infinitesimal conformal algebra which is globally
defined. We first analyse the generators [,. Observe that these generators are not defined
at z = 0. Thus we need to include the point at infinity to the complex plane and consider
the Riemann sphere C U {oo} = S%. Even if we consider the Riemann sphere then also not
all z=generators are well defined. For example the generators [,, = —2"*10, is non singular
at z = 0 only for n > —1. The other problematic point is oco. To understand the behaviour
of 1, at 0o, we make a change of variable z — —1/w and then study the limit w — 0. The
generators transform as

n—1
by = 219, — - (_l) o..

W

From this expression, we see that these generators are non singular at infinity only for n < 1.
Thus we see that only three generators are globally defined namely {l_1, [y, [ }. Thus we have
proved the following theorem.

Theorem 5.3.3. The global conformal group of the Riemann sphere CU {oo} = S? is three
dimensional and is generated by l_1, 1y, ly which satisfies the Witt algebra.

To identify the global conformal group, we will analyse the transformations generated by the
generators [_1, lo, [1.

It is clear that [_; generates translationsﬂ z — z+a. It is also clear that [, generators
dilatationf] 2 — az. We are left with ly. This corresponds to SCT. Let us work out the
explicit transformation. We have

exp(cly)z = <Z (Cfl—ll)2> z

n=0

“compare the generator [_; with the momentum operator P,.
8compare Iy with D.
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Observe that

By induction, we see that

Thus we have that

2 (—c)"nlznt! = z
exp(cly)z = — =z —cz)" =
xplch) ; n! g( ) cz+1
In total, a combination of [_1, [y, l; produces the following transformation:
G20 b deC, ad—bet0
z — a,bc ad — bc
CZ _"_ d7 ) ) ) ) )

where the last condition is required for invertibility of the map. We can rescale the complex
numbers a, b, ¢, d such that ad —bc = 1. Now we can identify each such map with the matrix

az +b o (@ b

cz+d c dJ’
A straightforward calculation calculation shows that composition of two such maps corre-
sponds to matrix multiplication of the corresponding matrices. Moreover observe that the

matrices A and —A produce the same conformal transformation. Hence we have proved the
following theorem,

Theorem 5.3.4. The global conformal group of the Riemann sphere C U {oo} = S5?% is
isomorphic to SL(2,C)/Zy where SL(2,C) denotes the group of 2 X 2 complex matrices with
determinant 1.

The Virasoro Algebra

Recall that the classical constraints we obtained when we quantised the Polyakov string
action in cannonical formalism satisfies the Witt algebra. Whereas in the quantum theory,
we got a nontrivial central term in the quantum Virasoro algebra. Here we rederive the
quantum Virasoro algebra which is the so called central extension of the Witt algebra.

Roughly speaking, a central extension by C of a Lie algebra g is g = g®C and is characterised
by the Lie bracket

(X, Y] = [X, Y]+ ep(X,Y), X,Y €3,

where p : g X g — C is a bilinear map.
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Let L,, n € Z denote the elements of the central extension of the Witt algebra. Then by
definition, we have

[Lim, Ly) = (m —n)Lpin + cp(m,n)
We now determine p(m,n) in three steps:
Step 1: p(m,n) = —p(n, m) and we can assume p(1,—1) = 0 and p(n,0) = 0.
Proof. Since the Lie bracket is antisymmetric, we obtain the first assertion. Next, without

the loss of generality, we can assume that p(1, —1) = 0 and p(n,0) = 0. If not then we can
make the following redefinition:

ep(1, —1)'

Lo= Lo+ ;

We can check that with this redefinition, we have p(1,—1) = 0 and p(n,0) = 0. Indeed, for
the modified generators we have

~

[En, ZO] =nL, + cp(n,0) =nlL,,

|:z1, Z,l] = 2L0 + Cp(l, —1) = 2/130

Step 2: p(n,m) =0 for n # —m.

Proof. To prove this, we begin by observing that Jacobi identity gives
HLmv Ln] ) LO] + [[L’rh LO] 7Lm] + HL07 L’m] ) Ln] - O

Using the characterisation of the central extension and the fact that the Lie bracket of the
Witt algebra also satisfies Jacobi identity, we get

(m —n)ep(m + n,0) + nep(n, m) — mep(m,n) =0
= (m+n)p(n,m) =0,

where we used results of step 1. The result is now immediate. O
We are now left with the only non-vanishing central extensions p(n, —n) for |n| > 2.
Step 3: p(n, —n) = &(n* —n).
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Proof. Again by Jacobi identity, we have
([Lni1s L], La] + [[Ln, L], Lonia] + [[Loy, Lopga], Ln] = 0.
Again proceeding as in Step 2, we obtain
(=2n+ ep(l, 1)+ (n+ )ep(n — 1, —n+ 1) + (n — 2)ep(—n,n) = 0.

Using p(1, —1) = 0, we obtain the recursion relation

1
p(nv _n): (n+2) p(n_17_n+1)7 ’n| 23
n_

Thus we are free to choose p(2,—2) to solve the recursion. We choose p(2,—2) for later

suitability. We get
(n—n)—l n+1 n+1 é
P =o\n=2) \n=2 3

(")

Thus we see that the central extension of the Witt algebra satisfies the Virasoro algebra:

Loy L] = (1= m) L + 75 (1 (0” = 1)) Snino.

Similar algebra is satisfies by the central extension of the generators i,,.

Remark 5.3.5. For the Minkowski metric, we can perform a similar analysis. To do so, we
define the lightcone coordinates u = —t +x and v = t +x where t denotes the time direction
and z the space direction. The metric becomes

ds® = —dt* + da® = dudv
and conformal transformations are given by u +— f(u) and v +— g(v) which gives

df dg
2
ds® = 090 dudv.

Thus we see that again the Lie algebra of infinitesimal generators is infinite dimensional.
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5.4 Primary Fields

We begin by discussing the transformation of fields under conformal transformation. This
requires us to investigate representations of the conformal algebra.

5.4.1 Representation of the Conformal Group in D Dimensions
Let ®(z) be a multicomponent classical field. We want to find representations of the confor-
mal group and its action on the field ®. We separately analyse D > 3 and D = 2 case.
Dimension D > 3

We use a cute little trick for this calculation. We begin by computing the generators which
relate the transformed field to the original field at x = 0. We do this computation for the
generators which keep the origin invariant. Then we use the translation generator to get the
generator at any arbitrary spacetime point. Since Lorentz transformations, dilatations and
special conformal transformations preserve the origin, we start by writing

Mﬂvq)(o) - SM,CI)(O)
K,9(0) = £,(0)
D®(0) = AD(0),

where S, A and k, are the operators associated to the representation ® corresponding to
Lorentz transformation, dilatation and SCT respectively. Now recall that under translation
r— T+ a,

(2)) =P(z) = ¥(z)=P(z—a) = "HO(x) = (e ha).

This implies that A
e " Pd(0) = d(x).

Now we have
M, ®(z) = M,,e” ™ b (0) = e D [ AN, e~ P3| $(0),
Now by first equation of (A.3.1)), we have
e DM, e P = M, — x,P, + x,P,.
Thus we have

M, ®(z) = e " P [M,, — z,P, + z,P,] ®(0)
= ¢ DML D(0) — (2, — 7, P,)e " P a(0)

e S, @(0) - <qu WALIEY
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Thus we conclude that
= —1i0,P(z)

M,Wq)(x) = SW,CI)(.%') + i(x#ay _ myau)CD(:L‘). (5.4.1)

Instead of using (A.3.1)) to evaluate ¢ P AM,we_””AP A, one could have used the conformal
algebra and the Hausdorff formula:

1

for operators A and B. Indeed it will be useful for later computations.

e Bet = B+ [B, A] + + (1B, AL AL A] + -

We see that the operators S

s A and K, must satisfy the conformal algebra:
Suv] =

A,
[ Ky = _mu

[Ku, k] = (5.4.2)
[ Syw] = @ (Mppkin — Npwtip)

[

S,uzu Spa] =1 (nupS,uo + nucrsup n,upsucr - T]VO'S/J,p) .
Using (5.2.3) and the Hausdorff formula, we have

e FeDe™ "o = D 4 2" P,
e B K e P = K 4 22, D — 22" M, + 2z, (2" P,) — 2*P,.

This gives us the transformation of the field ®(x) under dilatations and SCT:

Dd(x) = <—z’m”&, + &) ()
~ (5.4.3)
K, ®(z) = <"3u +22,A —2¥S,, — 2ix,2"0, + ix28u> O (z).

We now know how the field ®(x) transforms under all generators of the conformal algebra.
Let us assume that (S,,, ®) furnishes an irreducible representation of the Lorentz algebra.

The following theorem will be crucial.

Theorem 5.4.1. (Schur’s Lemma) Let I1 be an irreducible complez representation of a Lie
group G. If A is in the center of G, then II(A) = X, for some X\ € C. Similarly, if © is an
irreducible complex representation of a Lie algebra g and if [X,Y] =0 for every Y € g, then
m(X) = Al

Since A commutes with S,w, thus it must act as a multiple of identity on ®. From ([B.2.3)),
it is clear that

A = —iA,
where A is the scaling dimension of the field ®. This obviates the fact that A is not
Hermitian.
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Next, observe that since Ais a multiple of identity, it commutes with every other generator,
in particular the generator of SCT. Thus the algebra of these generators in (5.4.2)) implies
that x, = 0. This is a crucial result:

the generators of SCT act trivially on fields ® if they belong to irreducible representation of
the Lorentz algebra.

Now we want to get the transformation of field ® under finite conformal transformation.
To do this we employ the fact that a Lie algebra representation gives rise to a Lie group
representation via the exponential map. To make this precise, let ®,(x) transform in the
irreducible representation of the Lorentz algebra. Then under the conformal transformation
x — ' with parameter a,, A\, w,,, b, corresponding to translation, dilatation, rotation and
SCT respectively, the field @, (z) transforms as

~A/D

ox o _
= [exp (iw* SIW)]aﬁ Dg(A L),

Do) — O (2) = O

where A is the Lorentz transformation acting on spacetime with parameters w,,,. To prove
this, observe that the Jacobian for a general conformal transformation (excluding SCT as its
generator acts trivially so that SCT acts as identity) is given by A”. Moreover by assumption
®(\z) = A"2®(z). The transformation is now immediate.

In particular, for spinless field ¢ i.e. S,,¢ = 0, the transformation is

—A/D

o’ o(2). (5.4.4)

dla) — (@) = | =

Definition 5.4.2. A field ¢(x) transforming as in (5.4.4)) under global conformal transfor-
mations is called a quasi primary field with scaling dimension A. A field which is not quasi
primary is called secondary.

Dimension D =2

We have seen that the conformal algebra of the plane parametrized by (2% z') is most
conveniently expressed in terms of Witt algebra generators which in turn are expressed in
terms of the complexified coordinates z = 2! + i2? and z = o' — z':L‘2E| In what follows, we
will consider z and Z to be two independent complex variables but we also keep in mind that
at the end of the calculation, we have to identify z with the complex conjugate of z. With
this understanding, the fields ¢ on the plane transform to field on the four real dimensional
C? via the complexification R?* —s C?:

¢ (2% 2") — ¢(2, 2),

9note that the coordinates (2!, z?) is Euclidean. Recall that to get to Euclidean coordinates (2!, 2?) from
Minkowski coordinate (7,c), one has to perform a Wick rotation 7 — 2% = it,#! = 0. Thus the complex
coordinates are really the Wick rotated lighcone coordinates.
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where (z°,z') € R? and (z,z) € C% In two dimensions we already saw that the local

conformal group is infinite dimensional, so we have two different definitions based on the
transformation of the fields as we will see in a moment.

We know that the global conformal group of two dimensional Euclidean spacetime is gen-
erated by [_1, 1o, 11, so we work with a basis of eigenstates of the operators [, and ;. Let
the corresponding eigenvalues be h and h. These are known as the conformal weights of
the state. Since ly + [y and i (lo — Zg) are identified with the generators of dilatations and
rotations (see Table for the generators), the scaling dimension A and the spin s of the
state are given by

A=h+h, s=h—h. (5.4.5)

Definition 5.4.3. (i) Fields only depending on z, i.e. ¢(z), are called chiral fields or
holomorphic fields and fields ¢(Z) only depending on z are called anti chiral or anti
holomorphic fields.

(ii) A field ¢(z, z) which transforms under dilatations z — Az according to
3(2,2) — ¢ (2,2) = NN (A2, A2),
is said to have conformal dimensions (h,h).
(iii) A field which transforms under conformal transformations z — f(z) according to
h soz\ b
o2 o) = () (GL) otrer e (5.46)
is called a primary field of conformal dimension (h,h).

(iv) A field ¢ which transforms as a primary field only for global conformal transformations
f € SL(2,C)/Zy is called a quasi primary field.

(v) A primary field is always quasi primary but the converse is not true. A field in a CFT
which is neither primary nor quasi primary is called secondary fields.

We now find the infinitesimal version of transformation of primary fields. To this end,
consider the infinitesimal conformal transformation f(z) = z + e(z) with €(z) < 1. Up to
first order in £(z), we have

P(z+e(2),2) = ¢(z,2) + £(2)0.0(2,2) + O (7).

Using these expressions, we see that a primary field with conformal dimensions h, h trans-
forms as

(g_f>h =1+ hd.e(z) + 0 (%),

¢(2,2) — ¢(2,2) + (hO.e + €0, + hdse + €05) ¢(z, ).
Thus under infinitesimal conformal transformation, a primary field transforms as

0. z0(2,2) = (hO.e + €0, + hOse + £0;) ¢(2, 2). (5.4.7)
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5.5 Consequences of Conformal Invariance: Classical
Aspects

A theory of fields invariant under conformal transformations is called a conformal field theory
(CFT)H. We have seen in previous sections that the global conformal group in various
dimensions includes translations, Lorentz transformations, SCT and dilatations. Invariance
under conformal transformations has many consequences. We will analyse the classical
aspects of a CFT.

5.5.1 Translation Invariance: Energy-Momentum Tensor

Recall that by Noether’s theorem (see Appendix , there is a classical conserved current
corresponding to every classical continuous symmetry of the action. The current corre-
sponding to translation invariance is called the energy momentum tensor. Suppose that a
classical theory of fields ® with Lagrangian £ is invariant under infinitesimal translation

x — =+ &(x). Then by (B.2.4]), the energy momentum tensoﬂ is given by
oL
T =4t = ———0,% —n" L. 5.5.1

=3 = 50,9 e (5.5.1)
An alternative way of deriving the energy momentum tensor is the following: consider the
same theory but now let the background metric be dynamical 1, — g,,. Then translation
invariance of the action may be thought of as a diffeomorphism. Under such a transformation,
the metric transforms as

~ ox® OxP
o = 7 900

= (07 — 9,£®) (6] — 0uE") gup
= g — (Ouer + 0uey) -
By (B.2.5)), the action varies as

0S8 = /dDa:T’“’aua,,

2

where we used the fact that the energy momentum tensor is symmetric{ﬂ Thus we have

1
= — /dDacT‘“’ (Ouew + 0uey) ,

1
0S8 = —§/deT“”5gW.

10see Appendix [B| for precise definitions of symmetries

Hthe counting index a in the current as in is now a spacetime index because of the spacetime index
in the transformation parameter e(x).

12in general, the energy momentum tensor may not be symmetric. But one can show that it can always be
made symmetric by adding the divergence of an antisymmetric tensor which neither affects the conservation
of current nor the Ward identities. The new energy momentum tensor is called the Belinfante tensor. See
Subsection for the details of the construction.
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This shows that the energy momentum tensor is given by

05

T = 2"
0w

In string theory, we usually choose a different normalisation and define the energy momentum

to be
47 4S8

T, =——, 5.5.2

1224 \/g (59'“’” ( )
where g denotes the determinant of the metric. If the space is flat, we evaluate T}, on
Gy = Nw and the resulting expression obeys 0“T,3 = 0. In general, the energy momentum
tensor is covariantly conserved,

VI, = 0.

Remark 5.5.1. The energy momentum tensor in string theory differs from that in usual
QFT by a factor of 2r when the background metric is flat. We will keep this in mind and
when we apply CFT to string theory, we will drop any extra factor of 27 that appear. We
will mention this whenever we do so.

We now prove a typical consequence of conformal invariance.

Theorem 5.5.2. In a classical CF'T, the trace of the energy momentum tensor vanishes.

Proof. Since the theory is invariant under dilatation, this, let us vary the action with respect
to an infinitesimal dilatation © — 2’ = (1 + a)x. We have

0Gu = QG-

The action varies as

69 1
— D = —_—— D H
o5 /d x59;w(sgw 47r/d v/gal’,.

Since dilatations are symmetry of the theory, 05 = 0 which implies

" = 0.

"

[]

Remark 5.5.3. In a conformal field theory, vanishing trace of the energy momentum tensor
is a typical feature, but as it turns out, this does not hold at quantum level in general, for
example, in Yang-Mills theory it does not hold. In 2 dimensional CFT, it holds at quantum
level only when the metric is flat. For curved background, we get an anomaly called the
trace anomaly which was mentioned in Subsection [3.3.5] See Subsection for details.
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Energy Momentum Tensor in Two Euclidean Dimensions

We make the change of variables from real to complex as given in (5.3.4). Then using the
transformation of the energy momentum tensor

, Oz 02

e g v P
Using 2° = 3(2 + 2) and 2! = 5-(z — 2), it is straightforward to work out the components
(we have removed the primes)

1 .
T,. = Z (Too — 2iTh — Tn) )
1
Ts: = 1 (Too + 2iTyo — T11) (5.5.3)
1 1
T:=1T1: =~ (TOO + T11) = —T'LL = 0,

4 4

where we used the fact that 7%, = 0. Indeed, tracelessness gives

1 . 1 ,
T.. = 5 (Too — iTho), Tz = 5 (Too +iTho) -

2 2
Now using translation invariance 9,7"" = 0, we get
aoToo —|— (%Tw — O, (‘90T01 —|— 81T11 - 0, (554)

from which it follows that

1 : . 1 . .
0:1%. = — (0o + i01) (Too — iTr0) = ~(0oToo + N Tio + 01 Too —ido Tio ) = 0,
4 4 —— ~—
=-T11 =To1
where we used (5.5.4) and 7%, = 0. Similarly, one can show that 0.7%; = 0. Thus we have

the following result:

Theorem 5.5.4. The two non-vanishing components of the energy momentum tensor in two
dimensions are a chiral and an anti-chiral field T,,(z,z) and Ts5(z, Z).

5.5.2 Other Noether Currents

In this subsection, we compute the Noether current associated to other conformal transfor-
mations namely dilatations and Lorentz transformations.

Lorentz Invariance Current

Consider infinitesimal Lorentz transformations with parameters w,,. The spacetime and
field variations are

oxf 1 L 5F
5o~ 3 (nPta” —nfrat),
v

—1
= — S,
dw, 2
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By (B.2.4)), the associated conserved current is

ij:{ oL 6V¢_5MV£}5xV oL OF

9 (0,9) 0we  0(0,P) duw,
oL
— TRV p _ HP Y ; vp
Tq a” =T +Z8(3M<I>)S D,

where we write T§” for the cannonical energy momentum tensor

1/ oL
[ R _pnH
T 2(6@@8@ nyc),

which is same as the energy momentum tensor we calculated in upto a factor of half.
We also note that the cannonical energy momentum tensor may not be symmetric. Also note
that the current corresponding to Lorentz invariance has a nice compact expression modulo
the nasty spin generator term. There is a way around to bypass both these problems, that
is to make the energy momentum tensor symmetric and obtain a compact expression for the
current corresponding to Lorentz invariance. Recall that we are free to add the divergence
of an antisymmetric tensor in the current without affecting the conservation law. We will
use this freedom. We try looking for a tensor B*” antisymmetric in first two indices such
that with the modified energy momentum tensor

TH .= T™ + §,B*, (5.5.5)

the Lorentz invariance current is given by

0 — g _ T (5.5.6)
Proposition 5.5.5. Let
i[ oc or oL
BHev — v oz pop|
2100.0° 2T a2 T am,e)”

Then the modified energy momentum tensor T%" is symmetric and the Lorentz invariance
current is given by (5.5.6). The modified energy momentum tensor T%" is called the Belin-
fante energy momentum tensor.

Proof. 1t is clear that B** is antisymmetric in the first twp indices since S* = —S"*.
Checking the form of Lorentz invariance current is straightforward computation. To see that
T5" is symmetric, note that

0" =0 = TH'6", — THS", + 229, T — 2”9, T" = 0.

Now the symmetric property of the energy momentum tensor is immediate from the fact
that it is conserved. [
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Dilatation Invariance Current
Consider an infinitesimal infinitesimal dilatation with parameter «
=1+ o)z, F(®)=(1-ald)d,

where A is the scaling dimension of ®. The variations are

dxt OF
T
sa U da Ad.
Thus the conserved current is given by
oL oL
= Y0,® — Lat AD
L T X S TEX
oL
_H v
B TCX s

where T}” is again the cannonical energy momentum tensor, which now we may assume to
be symmetric. Again we have a nasty term in the current and it can again be removed by an
appropriate choice of an antisymmetric tensor as we did in the previous case. This time the
modified energy momentum tensor becomes traceless which we already concluded based on
scale invariance. We will not describe the exact procedure here. The interested reader can
look up section 4.2.2 of the Yellow book. Thus we conclude that the dilatation invariance
current is given by
jp =Thx",
where the energy momentum tensor is now symmetric and traceless.

Remark 5.5.6. The form of the current for scale invariance that we have concluded here
involves some steps which do not go through for two dimensions. But we will assume it
anyway and prove certain results which support our hypothesis.

SCT Invariance Current
An infinitesimal SCT with parameter b* is given by
o =t 4+ 2(x - b)at — (z -2, F(P)=(1—ib'K,)D.

Following similar methods, we see that the current is given by

oL SF
0(0,®) b

g =Tk p(Qx”x” i

We can again do some manipulations and get a cannonical form for the current which we
mention without further details:

= T‘;(Qx”x” — n””x2),

where T* is the energy momentum tensor.
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5.6 Consequences of Conformal Invariance: Quantum
Aspects in Dimension D > 3

So far we only discussed the classical aspects of a CF'T. We will now discuss the quantum
consequences of a CFT. Conformal invariance puts strong restrictions on the quantum theory.

5.6.1 Correlation Functions

In quantum field theory with classical action S[®], we define the correlation function of n
number of fields ¢4, ..., ¢, at spacetime points x1, ..., x, respectively is defined in terms of
the path integral

I[D‘I’]%(%)%(%) “ - O () exp(—S[P])
J[D®] exp(—S[®]) '

(D1(21)P2(22) - - Dn(0)) =

We can also define the correlation function of local operators Oy,..., O, in a similar way:

JIDP]O:(21)Os(x3) - - - O () exp(—=S[P])
J[D®] exp(—S[®]) '

(O1(21)O2(x2) - - O (1)) =

Remark 5.6.1. An important point is the following: in CFT, every local object is called
a field as opposed to QFT where we call only the objects ® appearing in the action as
field. Thus @, 0,®,T"" are all fields and consequently the functional integral measure [D®]
involves all possible fields in the theory.

We will compute several correlation function involving energy momentum tensor and primary
fields later.

We can determine the two point correlation function of quasi primary fields exactly upto
a normalisation constant using the constraints of conformal invariance. We will assume
that the functional integral measure is invariant under conformal transformation[} Let us
proceed.

Dimension D >3

We begin by computing the two point correlation function of two quasi primary spinless
fields ¢1, ¢o. By transformation rule (5.4.4) and invariance of functional integral measure,
we obtain the following transformation rule for correlation function:

ox'

oz

Ay/D Ag/D

(61002 (20) = |5 (61 (21) 62 (21) (56.1)

r=x1 T=x2

In particular for dilatation x — Ax, we get

(61 (1) da (w2)) = X322 (g (Ax1) 6o (A2)) . (5.6.2)

13this is a heavy assumption and may not hold in general.
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Under Lorentz transformation and translation, we can easily check that the Jacobian factor
in (5.6.1) is 1 and hence the correlation function remains invariant. This invariance under
Lorentz transformation and translation and transformation in([5.6.2)) requires that

(91 (1) @2 (22)) = f (|21 — 2)
where f(x) = A21722 f(Az). Only such function is given by |z; — x5| 721722, Thus we have

Cl2

e (5.6.3)

(01 (71) P2 (12)) =
|21 — @3]
where (5 is some function. We are left to impose transformation under SCT. The Jacobian
factor for SCT with parameter b* can easily be calculated to be
ox’ 1

—| = 5.6.4
Ox (1—2b-x+ b22?)” ( )

We need to compute the transformation of the term |z, — x5 under SCT to impose the
covariance of the correlation function under SCT. Indeed one can easily check that

|z — ifj|

(1—2b-a; + b2a2)"/ (1—2b- ;4 b%2?)

! A
|xi_xj’—

1/2°

for any two spacetime variables x;, x;. The correlation function transforms as

C112

A1+As

(b1 (1) 2 (25)) =

o) —
_ 012(7172
|1 — 2o

)(B1+82)/2 (5.6.5)

A1+Ay

where
Vi = 1—2b~xi+b2xf.

Thus covariance of the correlation function and using (5.6.4)), (5.6.5) and ({5.6.1)), we get

Ci2 1 Cha(y1ye) A1 T42)/2

A+A2 — _DA/D_DAyJD INENY
71 V2

|21 — 2
)(A1+A2)/2

|71 — 22|
Cio (’)/1’}’2

71A172A2 |5C1 - 5172|

A1+Az

This constraint is satisfied only if A; = Ay. Thus we conclude that
two quasi-primary fields are correlated only if they have the same scaling dimension.

The corresponding correlation function is given by

G A=Ay
(91 (1) P2 (72)) = {"rlm ' (5.6.6)

0 if A #£ A
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Thus we have determined the correlation function upto a normalisation constant. Similarly,
we can determine the three point correlation function. We will not go through the complete
details but mention the result:

C
(61 (1) da () P3 (x3)) = v AsxAﬁff,AleﬁArAZ, (5.6.7)

where
Ty = |wi — ],

and (o3 is again some constant. This impressive feat stops at this stage. For four point
correlation function, the result has a lot of freedom and cannot be fixed only using conformal
invariance.

5.6.2 Ward Identities

In this section, we will write the Ward identities associated to conformal invariance. Ward
identities is reviewed in Appendix [B.3] We recall the general form of Ward identity. For a
classical continuous symmetry with generator G, and conserved current j*, the ward identity
is given by

(JE (@) Py (21) -+ Py, (20)) = —iZ(S(x =) (Py (1) -+ Ga®i (25) - -+ Py () -

Oz

We will write X = &4 (x;) - -+ D, (x,,) to simplify notations.

Translation invariance

The current associated to translation invariance is the energy momentum tensor 7%. So the
Ward identity takes the form

9, (T",X) Z(s T — ;) <X> (5.6.8)

Lorentz invariance

The current associated to Lorentz invariance is
GHVP = WY P T
Using the generator of Lorentz transformation given in ([5.4.1)), the Ward identity is given by

Ou (T" 2P = Ta") X) = Z 0 (v — o) (27 0] — 27 0)) (X) —i5;"(X)]
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where S;” is the spin generator appropriate for the ith field of the set X. We can simplify
this Ward identity by using the Ward identity (5.6.8). The left hand side becomes

((0,T")aP X — (9, T"")a" X + (TH6, — T“pé”u)X>
Using the Ward identity (5.6.8)), we get
O (T af = THa") X) = (T = T) X) = 8(x — ;) [0} (" X) — O (2" X)]

= (1" =T") X) - 25(56—%) (2707 (X) — 2707 (X)

1870 (X) — 5™(X)]
= (@ =T7) X) = 37 o ) [0/ (X) = 2 00(X)]

l (2

Thus the Ward identity for Lorentz invariance reduces to

(TP —T") X) = —i Z 6 (x —x;) SYP(X). (5.6.9)

It states that the energy momentum tensor is symmetric within correlation functions, except
at the position of the other fields of the correlator.

Dilatation invariance

Using the generator D = —iz”0, — iA and conserved charge j* = T* 2" of dilatation invari-
ance, the Ward identity is given by

8, (T" 2" X) 25 T — ;) [faiy<X)+Ai<X>

Here again the derivative d, may act on 7" , and on the coordinate. By similar manipula-
tions as above, we get the Ward identity corresponding to dilatation invariance

(T X) Zéx—xz (X)), (5.6.10)

where A; is the scaling dimension of ®;. ThlS Ward identity says that the energy momentum
tensor is traceless within the correlator, except at the position of the other fields of the
correlator.

5.7 Consequences of Conformal Invariance: Quantum
Aspects in Dimension D = 2

5.7.1 Correlation Functions

In two dimensions, we can consider the more general primary fields which transform in a
nice way under local conformal transformation. Suppose ¢4, ..., ¢, are primary fields with
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conformal dimensions h;, h;. Under a local conformal transformation z — w(z,2), z —
w(z, %), the correlation function transformg'| as

(1 (w1, W1) ... P (W, W) = ﬁ (Cfi—f) B (%)—hi (p1(21,21) -« - O (20, Zn)) . (5.7.1)

i=1 w=w; W=w;

We can use ((5.6.6]) to write the two point function in two dimensions since the steps are the
similar. In complex coordinates,

2z = |z — 2| = /2%

So we have

(f1(21,21) @2 (22, 22)) =

Ci2 oy {@_@2_@
(Zl . Z2>2h (21 . Z2)2}7, hl = h2 =h

The two point function vanishes if the conformal dimensions of the two fields are different.
Similarly, we can write down the three point function. It is given by

1 1

<¢1 (l’1> ¢2 (1'2) ¢3 ($3)> - 0123 hi+ha—h3  ha+hs—h1 hs+hi—h2 ~hi+ho—hs _ho+hs—h1 hs+hi—hs
212 223 <13 212 %23 213

Again the four point function has freedom and cannot be fixed by conformal invariance alone.

5.7.2 Ward Identity

We wish to write the Ward identities corresponding to conformal invariance in complex
coordinates. We observe that the spin generator S, in two dimensions acts on a primary
field ¢ as a multiple of the antisymmetric tensor ¢,

(0 i w (0 =2
6*‘”‘(—%@ 0)’ ‘ _(22' 0)'

Thus the Ward identities take the form

0 . e B,
g L) X) = —;5(1’ — ;) a_xg<X>
e (T (1) X) = =i Y 56 (x — 2;) (X) (5.7.2)

(Th ()X ) = —Zé(m — ;) A(X),

where X denotes a collection of n primary fields and s; is the spin of the ith field. To convert
these into complex coordinates, we need the following lemma.

14 assuming that the functional integral measure is invariant.
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Lemma 5.7.1. In two dimensions, we have for x = (z, Z)

5(z) = Lo,k = 1@%.

™ oz ™

(5.7.3)

Proof. We will prove the first relation and the second is similar. We will show that for any
holomorphic function f(z) in a neighbourhood M of 0,

l/MdQ:Ef(Z)&% = £(0).

(e

To do this, we need a version of Gauss’s theorem in complex coordinates. For a vector field

F* Gauss theorem gives
/ >z, F" = / g, F*,
M oM

where d§, is an outward directed differential of circumference, orthogonal to the boundary
OM of the domain of integration. We can raise the index of the differential d¢, using €,
which amounts to using a counterclockwise orientation on M. We have d§,, = €,,ds” where
ds” is (dz,dz). Thus Gauss’s theorem becomes

/ d%@uF“ = {dze;. F* + dze . F*}
M oM

| (5.7.4)
=i {—dzF* + dzF*}
2 Jom
Here the contour OM circles counterclockwise. Taking F* = (0, f(z)/z), we get
1 1 1
_/ & f(2)0.~ = —/ 0. (ﬂz))
T Jur z Ty z
1
21t Joumr z
= f(0),
where we used the fact that 0; f(z) = 0. O

Substituting the delta function in ([5.7.2)) using ((5.7.3)), we easily see that the Ward identities
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take the form

2710, (T5. X) + 210; (T, X)) = Z Os 0w (X)

2710, (T5. X) + 210; (T, X)) = Z 0: 0, (X)
(5.7.5)
2<TZZX>+2 Tsz 25 x_$1 Z >

—2(T:X) + 2(T:.X) = Z(S x — ;) 5:(X)

Adding and subtracting the last two equations of (5.7.5) and using (5.7.3]) gives two new

equations

o (T X) = Z Os ——hi(X)
(5.7.6)

om (T.:X) = Za hi(X)

Z — w;

where we used the fact that for primary fields h; = (A;+s5;)/2 and h; = (A;—s;)/2. Inserting
these relations into the first two equations of (5.7.5)), we get

0 (T(z,z)X)—Z( 1 '8wi<X)+L')2(X>) —0

0. |12 20) = Y- (20030 + oy 0] | =0

where we have defined
T(z,2) = —21T..(2,2), T(z2,2) = —21Ts(z, 2). (5.7.7)
This says that the expression in the square bracket in the above equation is holomorphic and

antiholomorphic respectively. In particular 7 and T are functions of z and Z respectively.
Thus we may write

(T(2)X) =) { ! Dy (X) + L)zp()} + reg., (5.7.8)

— (2w (z — w;

where “reg.” stands for a holomorphic function of z, regular at z = w;. A similar expression
holds for the antiholomorphic part.
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Conformal Ward Identity

We want to write the Ward identity as variation of the path integral due to infinitesimal
conformal transformation, so that all the three Ward identity can be combined in a single
Ward identity called the conformal Ward identity:.

Theorem 5.7.2. Let x# — o't = x# 4 &(x) be an infinitesimal conformal transformation.
Then we have

5. +(X) = —% ) dze(:)(7(2)%) + 2% ]é dZ5(2)(T(5)X),

where C' is a closed curve in the complex plane containing the positions of all the fields in
X.

Proof. We have

1 1
9, (e,T") = €,0,T" + 3 (Ouey + Ope,) TH + 5 (O — Ope,) TH
1 1 (5.7.9)
=¢,0,T" + 5 (0,€”) nu, T + 56“%&56%1”“”

where we used
1 1 )
— (0,60 + Ovey) = 3 (00€”) N
(5.7.10)

N — DN

1
(Ouey — Ohey) = 560‘53&556#1,

First equation is same as (5.1.5)) for D = 2, the second equation can be verified component
wise. Now under a general infinitesimal transformation with parameters w, and generator
Gt(f) in the representation ®;,

oxt
Owy,
(I)/(x) = (I)Z<.§U) - ZWQGEZZ)(I)Z<$>

)

=2t 4w,

Thus we have

This implies that

0, (X)) = —iw, Z (B (1) GDD; () - By (1)) - (5.7.11)



We now apply this formula to infinitesimal conformal transformation. We have seen that a
general infinitesimal conformal transformation (without SCT) has the form given by (5.2.1])

o v
gy = ay, + by’

where the symmetric and antisymmetric part of b,, parametrises dilatation and Lorentz
transformation. The generators of translation, dilatation and Lorentz transformation in
representation ®; is —id,,, —iA; and s;¢,,, where A; and s; is the scaling dimension and spin
of the field ®;. Using and noting that the symmetric and antisymmetric part of b,
is precisely the left hand side of , we have

n

0e(X) = = [ (@) (@1 (1) -+~ Oy ®; () - - Dy ()

i=1 (5.7.12)
+ (P (1) - Ay () - - Py (1))

ity (Pr (21) - - - 5,6 D5 (23) - - Py (20))]

where
1 1 .
o= 58 €, Wy = €086,

2
Next, using we have
/ d*xd, (T (x)e, (2)X) = / dPxe, (2)0,(T" X) + a(z) (T X) 4 wu () (T X),
M M

where M is a domain containing the positions of all the fields in the string X. We now use

the Ward identities (5.7.2), we get

/Md%;a (T" (x)e Z/ Bad(x — ;) [e,(2) (By (1) - - - 0Dy () - - - Dy, (2))
+ (P (z1) AP (77) -+ P (1))
Fiwpy (P (1) -+ 5,6 Dy (25) - - P, (2))] -

Using (5.7.12]), we conclude that
5.(X) = / 228, (T (2)e, () X) (5.7.13)
M

Using (5.7.4) for F* = (T"(x)e,(x)X), we obtain
1

Sue(X) = i /O —dz (T + TF)es X) + d2 (T + T%)e.X)]

where ¢ = ¢ and & = 7 and the contour C' is the boundary curve of M. Now by (5.5.3),
we see that

(T#X) _—<T“ )X) = (T%X) _—<T“ )X)
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which by the Ward identity (5.7.2)) vanished if x is different from all of the positions of the
fields in X. Since C' goes around those positions, we obtain
1

o) = 5 /C —d (T7e.X) + d2 (T2, X)].

Substituting the definition (5.7.7)), we obtain the conformal Ward identity:
1 1

5.7.3 Operator Product Expansion and Primary Operators

When the position of two local operators in a correlator approaches each other, the correlation
function diverges. This divergence is typical in quantum field theories and reflects the infinite
fluctuations of quantum fields when “measured” at a precise position. An operator product
expansion (OPE) exactly captures this feature. We define OPE precisely now.

Definition 5.7.3. Suppose Oy be the local operators in a CF'T. For any two local operators
Oi(z,z) and O;(w,w), an OPE of O and (' is a relation of the form:

Oi(z,2)0j(w, w) = Y _ Cli(z —w,z — 0)Op(w, w),

where Cfi(z —w, Z — ) are functions of z — w, Z — @ which diverge as z — w.
Some remarks are in order.

Remark 5.7.4. (i) OPEs are always understood to be operator to be substituted in a
time ordered correlation function:

(0i(2,2)0j(w, w)X) = Cli(z —w, 2 — ) (O(w, 0)X)

where X is an string of local operators.

(ii) The string of operators X above is arbitrary their position must be distinct from the
positions of O;, O;.

(iii) OPEs have singular behaviour as z — w, which is all we care about. So in many case
we write an OPE of operators A(z) and B(w) as

A Blu) ~ Y PN

n=

where (AB), called the composite field of A and B, are non singular at z = w and ~
indicates that the above relation is true modulo nonsingular terms. Thus every OPE
has infinite number of nonsingular extra terms which we don’t bother writing.
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As an example, observe that in (5.7.8)), we proved that for a primary field ¢(w,w) with
conformal dimensions (h, h) we have

duo(w,w)

_ h 1
Z ———¢(w,w) + ——0zp(w, ).
)+ = o)
This OPE is characteristic of primary fields. Thus we may define primary operators alter-
natively by their OPE with energy momentum tensor.

Definition 5.7.5. A field ¢(z, 2) is called primary with conformal dimensions (h, h), if the
operator product expansion between the energy momentum tensors and ¢(z, z) takes the
following form:

(z iw)2 zZ—w
[(z (w0, ) + —— Bab(w, D).

(z —w)? Z—w
We will now discuss OPEs and primary operators with the help of an example.

Example: Free Scalar Field

Consider a massless scalar field X (o) where o covers a 2 dimensional manifold. The action
is given by

S = ! /d%@axaax.

Ao/
The classical equation of motion for this action can easily be computed. It is given by

PX =

To find the quantum consequences, we can use Ehrenfest’s theorem which states that the
expectation value of operators satisfy the classical equations of motion. We will derive this
explicitly. To do this we need the following lemma.

Lemma 5.7.6. Let F[¢] be a functional of field p*(x) which vanishes on the boundary. Then

the following holds .
F[g]
[Peis o

Proof. Suppose x varies over a manifold M and a € J where J is an index set. The variation
of F[¢] is given as

SFI6] = Flé+60] — F /d Zéqu
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We now have to construct the functional integral measure appropriately. We do this by
discretising space and hen taking the continuum limit. We now use DeWitt’s notation to
discretise the spacetime M. Put

i=(a,z)€l:=JxM, ¢ :=¢*(z), i€l

To discretize spacetime M, we run ¢ over a finite set I so that we now only have finitely many
variables ¢, i € I, in the theory. The functional derivative becomes a partial derivative

OF[¢]
ogt
We thus have
OF := Fl¢+ 6¢) — Z (%Z g

i€l
and the functional integral measure is simply the product of finitely many measures:

[H / ; W] contimu it /[D i

J€I

e

jel

This gives
3 F[¢]

continuum limit D .
5 [Pages;

The left hand side in above equation is zero on account of the integral of a total derivative
and the boundary condition satisfied by F' and the proof is complete. O]

Using Lemma [5.7.6, we get

0= / DX] fsi;?;] — / [DX]e S {ﬁa?xw)] .

Thus we get

which is Ehrenfest’s theorem.

The Propagator. We now want to compute the propagator for X. We again use path
integral for this. Recall that the propagator in position space is the correlation function
(X (o)X (0’)) which is given by path integral
1
(K (@)X (@) = [PXX @)X (e,

where Z is the partition function of the theory given by
Z = / [DX e,
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Proposition 5.7.7. The two point correlation function (X (o)X (0')) of the massless scalar

field is

/

(X(0)X (o)) = —% In(o — o')? + const. (5.7.14)
Proof. Using Lemma [5.7.0] we see that

efS[X] o’
0= / [DX]aTé(‘)() - / DX ]S [ﬁaﬁx@x (') +6 (0 — o)

Dividing throughout by the partition function, we get
(02X (0)X () = —27d/6 (0 — o)
So we find that the propagator satisfies the differential equation
(X (0)X (o)) = —21d/§(0 — o).

We now solve this differential equation. Since this correlator has to be translation and
rotation invariant, thus it should only depend on the norm of separation i.e. |0 — o’|. Put

r=lo—o] and K(r)=(X(0)X(c")),

then the differential equation ([5.7.15)) in polar coordinates (r, ) becomes

2
1o raK(T) + LI K(r) = —21a/0(0 — o)
ror or r2 002
(5.7.15)
L (ARDY
—o g ) = —2mdléo — o).

Let D, be a disc of radius r centred at o’. We now integrate both sides of ([5.7.15)) on D,
with respect to o, we get

2 " 1d [ dK(p)
dﬁ/ d ——( —) :—27ro// d*c6(oc — o'
/O N Garr T ( )
dK(r)

dr
= K(r) = —a/Inr + const.

— 27r = —2ma’

Thus we conclude that

/

(X(0)X (o)) = —% In(o — ¢’)* 4 const.
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Note that the correlator has a divergence as o — ¢’. This is a common feature of all quantum
theories as explained in Subsection In complex coordinates, the propagator looks as

/

(X (2,2)X (w,®)) = —%[ln(z —w)+1In(Z — @) + const.

Operator Product Expansions. Taking partial derivatives of (5.7.14)), we obtain the
correlation function of the derivatives of X. Explicitly, we get

(0,X(z,2)0,X (w,w)) = —%ﬁ + reg.,
T (5.7.16)
(0:X(2,2)05X (w,w)) = Y GECap + reg.

Note that the classical equations of motion in complex coordinates is given by
0,0:X(z,2) =0,

which enables us to write X(z,2) as a sum of a holomorphic (left moving mode) and an
antiholomorphic (right moving mode) function:

X(2,2) = X(2) + X(2).

In the following we shall only consider the holomorphic field X (z). We have already proved
that the OPE of the field 0X = 0,X (z) with itself is

o 1

0X(2)0X(w) ~ ————.
@0X(w) ~ -5
Note that exchanging the two factors does not affect the correlator which is a characteristic
of Bosonic fields. To know if these fields are primary or not, we need the energy momentum
tensor. The energy momentum tensor associated with the free massless scalar field is

1 1
Ty = —— (auxayx - énﬂyapxaﬂx) .

2mad

In the notation of (5.7.7)), in complex coordinates the energy momentum tensor is given by

1

T(z) = ——0X0X.

@
Similarly we can also calculate T(Z).
Normal Ordering. Care must be taken when interpreting the energy momentum tensor
as a quantum operator since it involves product of operators. In cannonical quantisation,

we could have normal ordered the above expression by putting annihilation operator to the
right of creation operators so that the vacuum expectation value vanishes. Here also we do
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the same but without referring to creation and annihilation operators. We denote this CFT
normal ordering by 88. The exact meaning of the above expression is

IXOX8 = — lim (OX (2)0X (w) — (DX (2)0X (w))). (5.7.17)

o o w—z

N
—
N
~—
|
|
oo

Let us discuss the generalisation of this normal ordering which will be useful later. The
essential idea is to subtract off the singular part from the operator which we get on taking
the expectation value. We define

8 XH(2,2)8 = X"(2, %)

8 X"(z,2) X" (w, w)8 = X"(z,2) X" (w, ®) — (X*(2,2) X" (w, w)). (5.7.18)

The definition of normal ordering for arbitrary numbers of fields can be given recursively as

SX’“ (21,21) L X (zn,Zn)S

5.7.19
= X" (21,21) ... XF" (20, Zn) — Z subtractions , ( )

where the sum runs over all ways of choosing one, two, or more pairs of fields from the
product and replacing each pair with its expectation value. For example,

3 XM (Zl, 21> XV (22, 22) X)\ (23, 23) S = XN (Zl, 21) XV (22, 22) XA (23, 23)
— (X*(21,21) X (22, 22)>X)‘ (23, Z3) — 2 permutations.

This normal ordering prescription can be compactified as follows

oMo — _1 2 2 o — v _ ) 0
808 = exp( 5 /d 21d%29(XH (21,21) X (Zg,Zg))qu (.5) 0% (0. 5) O,

where O is any operator, that is a functional of the field X. One can easily check that this
is equivalent to (5.7.19). Indeed the double derivative in the exponent contracts each pair
of fields, and the exponential sums over any number of pairs with the factorial canceling the
number of ways the derivatives can act. This gives us a useful relation when we use the
inverse exponential:

1 2. 12 _ - d )
= -5 XH X" 8038
O =exp ( : /d ad 2 (X (2.2) X' (2 2)) s =y s gy ) £ ©

=80 8 + g contractions

where a contraction is the opposite of a subtraction: sum over all ways of choosing one, two,
or more pairs of fields from 808 and replacing each pair with (X* (zq,2,) X" (29, Z2)). The
OPE for any pair of operators can be obtained using

80

[ee]

8038 =30,05 8 + g cross-contractions
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for arbitrary operators O; and ;. The sum now runs over all ways of contracting pairs
with one field in @; and one in @,. This can also be written

) )
5X51 (21, 51) (5X62 (ZQ, 22)

801 S 8028 = exXp (/ d221d222<X” (Zl, 51) XY (ZQ, 22)> ) S 01028,

where the functional derivatives act only on the fields in O; or O, respectively.

We now compute the OPE of 0X with T'(2).
Proposition 5.7.8. The field X is a primary field with conformal dimension (h,h) = (1,0).

Proof. We need to compute the correlation function
(T'(2)0X (w)) = (O[T (T (2)0X (w))|0),

where 7T is the time ordering operator. We can use Wick’s theorem to compute this time
ordered product. Recall that by Wick’s theorem, the time ordered product T (¢ ... ¢,) of
n fields is the normal ordered product : ¢;...¢, : plus all possible contractions where a
contraction of a pair of fields means that we replace the pair by the correlation function of
the pair. So we obtain

T(T(2)0X(w)) = —é (: 0X (2)0X(2)0X(w) : +:0X(2)0 X (z) : 0X (w)

FOX(2)0X(2) : aX'(w)) ,

where the square bracket indicates contraction. Thus we see that

(T(2)0X (w)) = —é ((0] : 0X (2)0X (2)0X (w) : |0) + 2(0]0X (2)|0)(DX (2)0X (w)))

_ (9X(2))

= (z—w)? + reg.
where we used (5.7.16)). Note that the reg. term contains the vacuum expectation value of
the normal ordered product : T'(2)0X (w) :. Thus in standard form, the OPE has the form

0X(2)

T(2)0X (w) ~ Gowp

We can expand 0X (z) around z = w:
0X(2) = 0X(w) + 2 X (w)(z — w) + O((z — w)?).
This gives

0X (w) N 02X (w)
(z-w)  (z-w)
Similarly we can calculate the OPE of 0X with 7__’(2) Thus according to Definition m,
0X is a primary operator of conformal weight (h,h) = (1,0). O

T(2)0X (w) ~ (5.7.20)
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Corollary 5.7.9. Higher order derivatives 0"X, n > 1 of the field X are not primary
operators.

Proof. Using ((5.7.20)), we see that
0X (w) ] 20X (w) N 20% X (w)

OO (W) ~ o | |~ s

O

Corollary 5.7.10. The field : €*X : is a primary field with conformal dimensions h = h =
a'k? /4.

Proof. We have

LOX(2)0X (2) 5 X0 2 Y (Z:')"  OX(2)0X(2) 5 X ()X (w) - X(w) :
-y (’T’j')” OX (2)0X (2) : X(w) -~ X(w) - X(w) - X(w)
OX (2)0X (2) = X (w)--- X(w)- - X (w)
40X (2)X(2) = X(w) - X(w) - X (w) :
Z n'n ( Z:lu)f));/ > P X" (w) +227_w;; 10X (2) X" (w) @ +reg.
k2ol : e X@W) ke SN (ik)!

= (z—w)2_2’—w;(n—1) 10X (2) X" (w) : Freg.

k22 : e X W) ika'? 9X (2)eRX W) L
== - re
4 (z—w)? z—w &

where we performed n(n — 1) contractions in first term and 2n contractions in the second
and third term in the second step. Now observe that in z — w

0.X(2) : etk X (w) . DX (w) : ik X (w)

~ regular.
zZ—w z—w
Thus we can add and subtract 2 X(“;);ikx(w): in the last step of the calculation of T'(z) :
eFX W) 1 to get
- 1
T(z) : X . = 0X (2)0X (2) =2 kX @)
of
k‘ " e sz(w) ik 0 X( ) kX (w) .
= ( w)2 -+ T w + reg.
k2o - e zk:X(w) . 8 ezk:X( ) .
= e w)2 T w - + reg.
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]

Remark 5.7.11. The fields V;(z) =: ¢*X(®) : are called vertex operators in CFT and we will
meet them again while discussing the application of CF'T in string theory. Corollary [5.7.10
also shows that the conformal weights of the free boson CFT is continuous.

Lastly we check whether the energy momentum tensor is a primary operator or not.

Proposition 5.7.12. The energy momentum tensor T'(z) is not a primary operator.

Proof. Again using Wick’s theorem, we have

T(2)T(w) = ! 10X (2)0X(2) = 0X(w)0X (w) :

12

R

L0(2)0X (2) = OX (W)X (w) : +2: 9X (2)9X (2) = OX ()X (w) :

—

1 | pu— | I
&/2

+4:0X(2)0X (2) : 0X (w)0X (w) :)

2 <_o/;)2)2_i2’:8X(z)8X(w):

a2\ 2 (z— a? 2 (z — w)?

+ reg.
o

where we used (5.7.16[). Here again the reg. term includes the first normal ordered product.
Again substituting 0X (z) = 0X (w) + 02X (w)(z — w) + O((z — w)?), we obtain

1/2 2T 2 02 X (w)0X
T - M2 2w 2 X)X (w)
(z—w)t (z—w)®? o zZ—w (5.7.21)
o 1)2 N 2T (w) N oT (w) e o
(z—w)t (z—w)? z—-w &
Thus the OPE obviates the fact that T'(z) is not a primary operator. ]

Example: Free Fermionic System

Consider a free Majorana fermion in two dimensions with Euclidean metric. The action is
given by

S = g / Uiy 419, b, (5.7.22)
where the Dirac matrices satisfy the Clifford algebra
{47} = 2.
With n* = diag(1, 1), one choice of the Dirac matrices could be
01 0 —1
0 _ 1
P=(o) =il )
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With this choice, the action can be simplified and we get
5 =g [ a(G05 + vo0),

where we have written the two component Majorana fermion as W = (¢, 1)). The equation
of motions are

oY =0, OY=0,

whose solutions are any holomorphic function 1(z) and any antiholomorphic function (z).

The Propagator. We now calculate the propagator (U;(x)¥;(y)) for i, = 1,2. As
usual, the first step is to express the action in the form:

g — %/dede\I’i(w)Aij(way)‘I’J@)'

From the action in ((5.7.22)), we can identify A;; with
Asj(@,y) = go(x — y)(7°7")ij0p-
The propagator is then the inverse of A;;:
Kij(m,y) = (Vi(®)P;(y)) = (A)y(z, y).

From the Gaussian integral of Grassmann variables, it is known that K;; satisfies the differ-
ential equation:

g6(x — y) (V") 0, Kej(z,y) = 0(x — y)dij. (5.7.23)
We now return back to the notation * — (2, 2),y — (w,w). Then (5.7.23) takes the form

2% (% gz) (<w<z,z>w< @) W(z’z)wwﬁii)—%(@;w 0 )

w
((z, 2)p(w, w))  (¥(z,2)Y(
where we used the following representation of the delta function as in Lemma [5.7.1}

1.1 1.1
4] =—0,— = —0;:—. 7.24
((2) = 0. = ~0.- (5.7.24)
The propagator is now easily seen to be
_ 1 1

<w(27 z)w(’w7w>> - %Z W
- - 1 1 (5.7.25)

(020w, 0) = 7 ——



Operator Product Expansions. After differentiation, we get using (5.7.25))

1 1

OV 2l 0) = g s

(0:90(2,2) 0 (w,w)) = _1 1

g (z —w)?
The OPE of two Fermions then reads
1 1

= . 5.7.26
2rgz —w Treg ( )

b(2)Y(w)

Note that the OPE reflects the anticommutativity of the Fermionic wavefunctions. The
energy momentum tensor can be evaluated using the general expression in ((5.5.2)):

7% — 295 90 — 2gp0y

90
2z __ oL - _ YIEAR
T% = 255200 = 20000
5 0L =
T% = 255 -0% = ~2gy0y.

Note that the energy momentum tensor is not symmetric but it becomes symmetric onshell.
We need not worry about this because we can always use Belinfante construction described

above Proposition [5.5.5] In the notation of ((5.7.7]), we have
T(2) = —mg : $(2)00(2) -,

where the normal ordering is again defined as

20y < (2) = lim [(2)0¢ (w) — (Y (2)0¢(w))] .

zZ—w

Proposition 5.7.13. The Fermion wavefunction 1(z) is a holomorphic primary field of
conformal dimension h = %

Proof. We calculate the OPE of ¢(z) with T'(z). We have

T(z2)(w) = —mg : (2)0%(2) : h(w)
10X() 1 u(e)
S 2z—w  2(z—w)
1 yY(w) 10X (w)
T 2(z—w)? 3 z—w

5 T reg.

+ reg.,

where we carried over 1(z) over to 0.X (z) resulting in a minus sign and we used the argument
as in Corollary [5.7.10| to replace ¥(z) and 0v¢(z) by ¢ (w) and dy(w) respectively. O
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Theorem 5.7.14. The stress tensor T(z) satisfies the OPE

T(2)T(w) = ;L(Z _1w>4 n (37;(7:;))2 + Zjl(zuw) + reg.

Proof. The proof is similar to the free Boson case but with larger number of contractions. [

Example with Foresight: The Ghost System

Consider the following action:
529 [ aapre

where both fields b, ¢ are Fermionic fields and b, is symmetric traceless tensor. These fields
are called ghosts or reparametrisation ghosts and will appear in our discussion when we
discuss path integral quantisation. The classical equations of motion are

Dbay =0, 0%+ 0% = 0.

In complex notation, we usually write ¢ = ¢*,é = ¢ and b = b**,b = b?>. The equations of
motion then reads

ob=0, Ob=0;
Jde=0, 0¢=0, Oc=—0c.

Propagator. It is calculated as usual by writing the action as

1
S = 5/dedebuu((x))AZ”(w»i‘/)Ca(y%
so that 1
A (2,y) = 590:0(z — )",

The factor of 1/2 takes care of the double counting of the terms in the sum since b, and
hence A*. As usual the propagator is given by K = A~! where K satisfies the differential
equation

1
SO0 KL, () = 0( — y)das,

Solving this, one gets

b(2)e(w) = Wigz ! —preg
This immediately gives us the OPE
1 1
(e(2)b(w)) = =
(b(2)0c(w)) = _7T_g (z — w)?
1 1
OH)e(2)) =



The usual energy momentum tensor is given by
Th = g (b“aa”ca — n“”bo"gﬁacﬁ) .

It turns out that the canonical energy momentum tensor as above is not symmetric even on-
shell, so we need the full machinery of Belinfante construction to make the energy momentum
tensor symmetric. We add 9,B7*" as in Proposition where

BPH —%g(b"pc" — bEP)
It can then be shown that the Belinfane energy momentum tensor given by
TH = 5 [0 o + 170" cq + 0 — 1 b0 c5]
is symmetric and traceless onshell. In complex coordinates, we have
T(z) =mg:(20c b+ cob) :
The OPE of T" with ¢ can again be calculated using Wick’s theorem:
T(z)c(w) =7g : (20¢ b+ cob) : c(w)
c(z) 0.¢(z)

= - 2 .
(z—w)2+ w—l—reg

_ )
B (z—w)2+22—w

z
z —

Therefore c is a primary field with conformal weight h = —1. Similarly, we have
T(2)b(w) =g : (20c b+ cob) : b(w)
b Owb
(@) dublw)

2 .
(z—w)? z—w

This implies that b is a primary field with conformal weight A = 2. Note that in both the
OPEs we used the anticommutativity of b and c. Finally we have

T(2)T(w) = 7g* : (20c(2)b(2) + ¢(2)0b(2)) :: (20c(w)b(w) + c(w)Ob(w)) :
—13 2T (w) 0T (w)

:(z—w)‘l%—(z—w)QjL —w

Thus we see that this OPE has same form as the previous two examples except for the
coefficient of the quartic term. One can tacitly modify this coefficient by modifying the
action in such a way that the OPE of b and ¢ remains the same but the energy momentum
tensor changes. To be precise, we subtract a total derivative : 9(cb) from the original action.
This gives the new energy momentum tensor to be

T(z)=mg:0ch:.
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This new theory is called the simple ghost system. New OPEs are

+ reg.
z—w

b(w) N Ob(w)

3 o + reg.

S (z—w)? oz —

These OPE imply that in simple ghost theory, c is a primary field with conformal dimension
h =0 and b is a primary field of dimension h = 1. The OPE of T" with T is

1 2T (w) | OT(w)

(z—w)?* (z—w)? z-—w

T(2)T(w) = + reg.

Thus we see that the new coefficient is simply —1.

Remark 5.7.15. Note that the OPE of T'(z) with itself in all the three examples above
fails to be that of a primary operator only on account of the (z —w)~* term, without which
T(z) would be a primary operator of conformal weight (h, h) = (2,0). The coefficient of the
(z — w)™* term thus decides this fact. This is a general feature of CFTs. The coefficient
of this inverse quartic term is called the central charge which we now explore in the next
subsection.

5.7.4 Central Charge
We begin by proving the OPE structure of the energy momentum tensor in general CFTs.
Theorem 5.7.16. The energy momentum tensor in a 2d unitary CFYE satisfies the OPE:

T(z)T(w) = e C_/i})4 + (37:(10032 + (‘ZT_(I:L) + reg.
TET(w) = Loy + ook + 2+ e

The constant c,c are called the central charges of the CF'T.

Proof. We begin by observing that since the stress tensor is a symmetric tensor of rank 2,
thus it must represent a spin s = 2 representation of the Lorentz group. Next, the stress
tensor has scaling dimension 2. Thus the general form of the OPE of T'(z) with itself will
be of the form:
2T (w) oT (w)

+ + reg.
(z—w)? z—-w

T)T(w)="---+

where the dots in front indicate higher order singularity. Other singular terms in the OPE
have the form: o

(z —w)*’

15we will define and discuss this notion in next section.
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which implies that the scaling dimension of O,, will be
AlO,]=4—n

since the left hand side has scaling dimension 4 and (z — w)™" has scaling dimension —n.
We will shortly prove that any unitary CFT cannot have conformal weights h, h < 0. Thus
the scaling dimension of O, cannot be negative which implies that the most singular term
that can appear in the OPE is (z — w)™*. So the OPE reduces to

c/2 O(w) 2T (w) N o7 (w)

(z—w)* (z—w) (z—w)? z-w

T(2)T(w) = + reg.

where O(w) is some field of scaling dimension 1 and ¢ is a complex number. We now only
need to rule out the (z —w)~3 term. Note that this term violates the T'(2)T(w) = T'(w)T(z)
which is required since we interpret OPEs as operators inside a correlation function. So now
it suffices to show that (z —w)~! term does indeed satisfy this upto regular terms. To see
this, note that we can expand Taylor 7'(z) around w:

T(z) =T(w) + 0,T(w)(z —w) + O((z —w)?) = 9.T(z) =0+ 9, T(w) + O(z — w).
Thus

c/2 N 2T(z) +aZT(ZZ)—|—reg.

C(w—2)t (w—2)?  w-—
c/2 N 2(T(w) + 0, T(w)(z —w) + O((z — w)?)) N OuT'(w) + Oz — w)

- (w — 2)* (w— 2)? w—z Tres.
_c/2 2T (w) oT (w) e

C(z—w)? * (z —w)? N zZ—w Treg

=T(2)T(w),

where the higher order terms in the expansion have been included in the regular terms. This
trick does not work for (2 —w)™® term. Similar analysis gives the OPE of T'(2). O

Transformation of 7'(z) and the Schwartzian derivative

The anomalous OPE of T'(z) with itself due to nontrivial central charge results in a nontrivial
transformation of the stress tensor under conformal transformations. This naturally leads to
the notion of Schwartzian derivative. To this end we use the conformal Ward identity of The-
orem [5.7.2] to obtain the transforamtion of 7" under infinitesimal conformal transformations
2z — z+¢e(z). We have

5.T(w) = —% [ de(yr T )
1 c/2 2T (w)  0,T(w)
= om [, ) Lz —w) T ewp T eow T (5:7.21)

= — 15 0ue(w) = 2T (w)dye(w) = £(w)du T (w),
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where we used the Cauchy residue theorem and the fact that £(z) and reg. are holomorphic
function. Thus we have found the infinitesimal transformation of the stress tensor under
infinitesimal conformal transformation. It is not obvious what the finite transformations
are corresponding to this infinitesimal transformation. Here is the answer: under a finite
conformal transformation z — w(z), the energy momentum tensor transforms as followg™|

T'(w) = (fl—f>_2 [T(z) - 1—02{w; z}} , (5.7.28)

where {w; 2} is the Schwartzian derivative of w defined by

(w2} = dw/dz? B § d*w/dz* 2
dw/dz 2\ dw/dz

We will just verify that the infinitesimal version of this transformation is as in (5.7.27)).
Indeed for infinitesimal conformal transformation, since w = z + &(z), upto first order in ¢,

we have , , )
e 3 0se 3
{Z+5’Z}_1+828_§(1+825) ~ Oe.

At first order in € then, we have
T'(z+¢)=T(2) +e(2)0.T(2)
= (1+0.6)2 [T(2) — 750%]
= (1-20.6) |T(2) - 50%] |
where we used . This implies that
0T (w) = T'(w) = T'(w) = —é&ié(w) — 2T (w)dwe(w) — e(w)duT (w),

which coincides with (5.7.27) exactly. We now show that ([5.7.28]) satisfies the group com-
position law of consecutive conformal transformation: two consecutive transformations z —
w(z) — u(w) is equivalent to one transformation z — w. Indeed we have

rw = (2) [ - )]

o o N [ L E R

Once we convince ourselves that the Schwartzian derivative satisfies

{us 2} = {w; 2} + (%)2 {uw}, (5.7.29)

16primes are not derivatives here, they just denote the transformed tensor.
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then we can easily see that

T (u) = (Z—Z) N ()~ 5t}

This is what we wanted to prove. The required identity (5.7.29)) of Schwartzian derivative is
pretty straightforward and we omit its proof here. Moreover, we can confirm something we

already know. If we put u = z in (5.7.29)), we get
dw\ 2
wis) == () twsw)

which gives another version of ([5.7.28]):

T'(w) = (‘;—f) T(z) + %{z,w}. (5.7.30)

This equation says that T'(z) is a primary field of conformal dimension 2 modulo the central
charge (compare with (5.4.6))). Also for global conformal transformations

az+b a b
’ d

) € SL(2,0C),

it is easy to see that {z,w} = 0 and we conclude that 7'(z) is a quasi-primary field (see

Definition (iv)).

Casimir Energy

When we introduce an intrinsic scale into our theory, it breaks conformal symmetry, since
conformal invariance includes scale invariance which means that the theory has no scale.
This introduction of scale automatically leads to the central charge. We understand this
using a toy example. Consider a conformal field theory on the whole complex plane. We
map the theory to a cylinder of circumference L using the transformation

z—w=—Inz.
27

Thus we have introduced a periodic boundary condition which inturn is equivalent to in-
troducing a scale in the theory. Using the transfomation of energy momentum tensor as in

(5.7.28), we get
om\ c
Toatw) = () [0 - 5],

where we used the fact that

dw_ L {w: 2} = 1
dz 27z’ Wi 2 92
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Here Tty and Ty, denotes the stress tensor on the cylinder and the plane respectively. If
we assume that the vacuum energy on the plane (7},) = 0, then the vacuum energy on the
cylinder is given by

lc

{Ten) = — 573 (5.7.31)

Thus the central charge can be interpreted as the Casimir energy of a CF'T on the cylinder.

The Trace Anomaly

In Subsection [3.3.5] we proved that the Virasoro generators satisfy the Virasoro algebra
which is the central extension of the Witt algebra. We will now show that this is related to
the fact that the stress tensor fails to be traceless in the quantum theory in the sense that
the expectation value (7'%) in general is non-zero. This means that the conformal symmetry
is broken at the quantum level. To be precise, we will show that for a conformal field theory
on a manifold with Ricci scalar R, the expectation value of the stress tensor satisfies:

(T7) = —éR- (5.7.32)

Note that conformal anomaly is not present for conformal field theories on flat manifolds
since the Ricci is identically zero for flat manifolds. Before we prove this important result,
we make some comments:

° is true with expectation value is taken for an arbitrary state and not just the
vacuum. This implies that the expectation value must not depend on any physical state
except for the background metric with an added condition that it must have conformal
dimension 2. This leaves us only with R being our only choice. The question is what
is the coefficient which is the content of the derivation here.

e In 2d, we can always transform the metric to g,s = €*“d,5 by a suitable choice of
chartd”] on the manifold for some function w. The Ricci scalar then takes the form:

R = —2e *0w. (5.7.33)

Thus we see that the Ricci scalar depends explicitly on the parameter w. im-
plies that the expectation value (T'%) is dependent on the parameter of transformation,
which means that the expectation value is not invariant under Weyl transformations.
This explicitly shows that the quantum theory is not conformally invariant.

e Note that involves the central charge of only the left-moving sector. There
is nothing special about this. If we calculated the expectation of the trace in the
right-moving sector, we would have gotten the same result with the right-moving cen-
tral charge ¢. If we want both sectors to be consistent with each other with fixed
curved background, then we require ¢ = ¢. This is an example of something called the
gravitational anomaly.

17see Subsection
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Theorem 5.7.17. In a 2d CFT with central charge ¢ on a curved background with Ricci
scalar R, the expectation value of the energy momentum tensor satisfies

ay . ©
(1%) = =55 R.

Proof. We begin by calculating the OPH™|of T.; with T},;. The energy conservation equation
0, TH gives

8sz2 = _aZTzz- (5734)
We thus have
1 27T OpT
8ZngawTww = agaszszw = (758@ E (w) + (w) + reg. (5735)
2z—w)r  (z—w)?  z—w

Note that the derivative of the regular term vanishes but the derivative of singular terms
gives rise to delta functions. Indeed using Lemma [5.7.1 we have

1 1 9 1 _ T i o
0:0 ((z — w)4) = 3!('92&0 (82811)2 — w) = 3azawaw5(z w,zZ —w). (5.7.36)
Integrating the 0., 0,, in (5.7.35]), we get
ngTw@ == %aza@(s(z — w, zZ— QD) (5737)

Note that the other terms in the OPE do not contribute since the integral gives
regular terms. The expression in (5.7.37) is called the contact term. Usng the definition
of stress-nergy tensor in terms of action, we now calculate the variation of the expectation
value of trace with respect to ariation in the metric §g*:

(1.0) =0 (Dol Ti0) = 1[I0l (T30) [ o'vaog" Ty, ().

In particular, for Weyl transformation, dg.s = 2wd,s, which implies that §g*° = —2wd§*”.

Thus we get

5(T% (o)) = L [Dple™™ (T‘fl(a) /dQU’w (") Tﬁﬁ (0')) : (5.7.38)

_27T

We can now use the OPE (5.7.37)), but first we need to change the coordinates from % to
(z,2). Using (5.5.3)) we see that

T2(0)T (o) = 16T.z(2, 2) Twa(w, ). (5.7.39)

8note that in the classical theory the mixed components Tz, Tk, is identically zero. See Subsection
for details.
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Moreover we see that ~
80.050(z —w,zZ — w) = —0% (o — o).
Thus we get

T%(0)T%, (0') = ——06 (0 — o) . (5.7.40)

We can now plug this into ([5.7.38]) and integrate by parts to get

§<T§>:g82w — <T§>:—1—02R (5.7.41)

where in the last step we used and replaced e=2 ~ 1 since w is infinitesimal. Note
that our derivation above only applies to spaces whose metrics are close to the flat metric.
But as discussed before, once we determine the coefficient in front of the Ricci scalar for the
expectation value of trace, we can write the trace anomaly for any general 2d surface. [
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Chapter 6

2d Conformal Field Theory and its
Application to Bosonic String Theory

In the previous chapter, we explored some general features of classical and quantum confor-
mal field theory in various dimensions. We saw that the conformal symmetry gets broken
at the quantum level and results in a nontrivial central charge. We discussed operators in
2d CFT and the general notion of operator product expansion. In this chapter we explore
the quantum Hilbert space of 2d CFTs and the famous state-operator correspondence. We
will also discuss various other mathematical notions stemming from 2d CFTs. We begin by
discussing the quantisation of 2d CFT.

6.1 Quantisation of a 2d CFT

In this section, we explore the general procedure of quantising a 2d CFT. In usual QFT,
we quantise a classical system on time slices which are time ordered in the usual way and
construct the Hilbert space at those time slices. The Weyl invariance in a CFT enables us
to formulate an equivalent ordering on the plane called radial ordering. This enables us to
discover many amazing aspects of a 2d CFT and its quantum theory. We will describe its
various aspects beginning with the radial quantisation.

6.1.1 Radial Quantisation

Consider a quantum field theory on the plane R2. We usually parametrize the plane by
coordinates (x,t) and in the quantum theory, the states live on time slices and the Hamilto-
nian H = 0, evolves the states in time (in the Schrédinger picture). Thus time ordering is
defined by the vertical stacking of the time slices. In a CFT, we reformulate time ordering
in a way which helps us in uncovering new results, we call this ordering the radial ordering.
To understand the radial ordering, we first map a quantum field theory on the plane to a
quantum field theory on the cylinder. To do this, we first parametrize the plane with the
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origin removed by a complex variable z = x + ¢t and then map it to the cylinder via
z=>Inz=10+ir, o€l0,1), 7€k

This gives a one to one mapping of the plane with the origin removed to the cylinder. If we
now consider a CF'T on the plane with flat metricﬂ

(ds®)p = dt* + da?.

On the cylinder, the metric is
(ds?)ey1 = do® + d7°.

Since

rx+it=z=-exp(oc+ir) =exp (o) (cosT+isinT).
This means that

dx = exp (o) cos Tdo — exp (o) sin 7dr,

dy = exp (0) sinTdo + exp (o) cos Tdr.

This implies that

(ds2)p1 = exp(20) (dsz)cyl.
Thus the punctured plane and the cylinder are conformally equivalent. Thus any CFT on
the plane is same as a CFT on the cylinder. Thinking of a CF'T on the plane as a CFT on the
cylinder, we get a new interpretation of the time ordering on the plane induced by the time
ordering on the cylinder. To be precise, in a CFT on a cylinder, the time ordering is given
by the vertical stacking of the circles. When this time ordering is translated to the plane,
we end up with radial ordering. To make this quantitative, consider the inverse mapping of
cylinder to the plane ag’]
W=04iwrz=e",

Then 7, > 75 implies that |2;| > |22] where z = €7¢%. Since |z| on plane represents the radial
distance, larger 7 on the cylinder translates to larger radial distance. Thus time ordering on
cylinder translates to radial ordering on plane. Thus the Hilbert space now live on radial
slices and the Hamiltonian evolves the states in the radial position on the plane. Thus the
Hamiltonian takes the form of the dilatation operator

H = 20. + 70-. (6.1.1)

Lwe consider the Euclidean metric. The analysis for Minkowski metric is similar.

2the extra minus sign is introduced so that greater 7 on cylinder gives larger radial distance on the plane.

128



\“‘--._________--"/ -
".— -"'h.
- ~
s ~
P it -~ / \
\—_-———/) f -— Y
! 4 \
hY
T I / |
’ I \ } I
------ / I
\ /
< ’
~ ’
S ‘.,
\-‘-—_'——__.____——-"-‘J
— =0

Figure 6.1: Mapping the cylinder to the complex plane

Hermitian structure

To construct the quantum states of the theory, we need to assume the existence of a vacuum
state |0;0) on which we can act by creation operators to construct the Hilbert state of the
theory. We will discuss more about it in the next section. In usual QFT, a field ¢(x,t) gives
rise to an asymptotic state ¢y, o< lim;_, o, ¢(x,t). On radial quantisation, this translates to

(@) = lim ¢(z,2)]0;0) (6.1.2)

An important point to note is that there are two asymptotic states associated to a field
in a QFT with the usual time ordering: namely the “in” and “out” state corresponding
to t — Foo respectively. But in radial quantisation, we get a single asymptotic state
corresponding to z,Z — 0. This is remeniscent of the “operator-state correspondence” in
conformal field theory which we will discuss in detail in coming sections.

We now endow a Hermitian structure to the states of the theory as follows: for a con-
formal field ¢(z, z) with conformal weights (h, h), define the Hermitian conjugate on the real
surface z = 2*:

d(z,2) = 2722"2g(1/2,1/2). (6.1.3)

This definition can be motivated by the fact the on the plane, the Wick-rotated Euclidean
time 7 = it must map to 7 — —7 inside an operator under Hermitian conjugate if ¢ is to
be interpreted as time. This is precisely done by z — 1/z and z — 1/z. The prefactor will
make sense in a moment. The Hermitian conjuate of the asymptotic in state is then defined
to be the asymptotic out state:

|¢0ut> = |¢in>T-
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This is called BPZ (Belavin-Polyakov-Zamalodchikov) conjugation. The inner product be-
tween states can now be calculated to be

(outldw) = _lim  (0;0[6(z, 2)Té(w, )] 0;0)
= lim 2 22720;0|6(1/z,1/2)d(w, ®)|0; 0)

2,Z2,w,w—0

= lim £2h€21(0; 06 (€, €) (0, 0)|0; 0).

Note that the last line is a correlator while the first line was a vacuum expectation value,
since the operators are clearly radial (time) ordered. Also by the usual transformation of
correlator under conformal transformation ([5.7.1]), the last line is independent of ¢ and hence
the inner product is well-defined.

Mode expansions

A quasi-primary operator ¢(z, z) of conformal dimension (h, k) can be expanded as a Laurent
series in z and Z as follows:

$2,2) = D Gpazr "I (6.1.4)
m,ne”

By residue theorem, the modes ¢,, , can be expressed as a contour integral

1
omi

Prmn dz Zmth=1 j{dz 714 (2, 7). (6.1.5)

Hermitian conjugate of the operator gives

$(z2)t =Y of, 2 (6.1.6)
m,n€eZ
Using the definition in , we easily see that
Olyn = .- (6.1.7)
We introduce the notation
[ B} i= lim (2, 2)[0;0) = ¢y, 5|0 0) (6.1.8)

for the asymptotic states. Note that for the asymptotic “in” and “out” states to be well
defined, we must have:

Gmn]0;0) =0; m>—h,n> —h. (6.1.9)
For a chiral field ¢(z) we write the expansion as
$(z) =D dnz ", Bl =0, (6.1.10)
nez
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and similarly for anti-chiral field. In particular, for the stress tensor, we have

T(z) =Y L,z "2 T(2)=>» L,z"7 (6.1.11)

nez neZ

so that | )
Ln = % dz T(Z)Zn+1, Zn = %%dz T(E)Zn+1. (6112)

The asymptotic state corresponding to the stress tensor is called the conformal vector. Note
that the condition (6.1.9)) for the stress tensor gives

L,|0;0) =0, L,|0;0) =0, n>1. (6.1.13)

In particular, the vacuum vector is invariant under the global conformal transformations
generated by Lo, L.

6.1.2 The state-operator correspondence: vertex operators

In conformal field theory, there is a distinguished property: the states and local operators
are in one to one correspondence. In a generic quantum field theory, this is never true; one
local operator corresponds to many different states. To understand this correspondence,
recall that a state in quantum mechanics can be represented by a square integrable function,
called the wavefunction, satisfying the Schrodinger equation. More concretely, suppose we
have a particle moving in on dimension under some potential. Suppose the particle is in
quantum state| | (¢)) at time ¢. In the position basis |z) the state |¥(t)) can be represented
by the wavefunction W(x,t):
U(x,t) := (z|¥(z)). (6.1.14)

One can understand states in QF T in a similar way. Instead of position basis, which describes
the trajectory of particle in space, we construct a field configuration basis |p(o)). A state is
then represented by a Schrodinger wavefunctional W[¢ (o), ] - the corresponding state being
|W(t)) and

Vip(a),t] = {o(a)|¥(1)). (6.1.15)
Consider a CFT on the plane which is radially quantised. Suppose we have a local operator
O(2). Let us now construct a state at radius |z| = r on the pland’] Let us consider fields
in a unit disc in the z-plane with fixed boundary condition ¢, at the boundary circle. We
consider the path integral with the operator insertion O(z = 0) in the path integra]ﬂ Then
the functional

o [dy(0)] = / Déi],, exp (—S[6]) O(0) (6.1.16)

3Recall that in a QFT the Hilbert space of states is defined on time slices of spacetime so that for every
t € R there is a Hilbert space of states. Similarly in quantum mechanics, where we do not have the notion of
fields or spacetime, we have a Hilbert space of states for each time determined by the wavefunctions obtained
by solving the Schrodinger equation.

4Recall that in radial quantisation, time ordering changes to radial ordering. Thus Hilbert space of states
exists at various radii.

5We consider Euclidean path integral.
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defines a wavefunctional and hence a state of the QFT. To construct a local operator from
a wavefunctional, we recall how wavefunction is propagated in time. This is done using the

propagator
z(tf):mf
G(xy, ;) = / [Dx] exp(—S) (6.1.17)
x(ti)zmi
where the path integral is over all classical paths with position z; at time ¢; and position

xs at time t;. Now a wavefunction 1); (x;, ;) can be evolved to s (zf,ts) using the above
propagator:

¢f(xf7tf):/dxz (g, 2:) i (i, 1)

(6.1.18)
dz; [Dx] S
/ T /t) y x] exp(—9).
Let us now do the same with states in QFT. We have
(tr)=0s
Uy lor(e).ty] = / [Di] / [D¢] exp(—s[8])¥; [¢i(0), L] (6.1.19)
#(ti)=¢i

where the path integral is over classical solutions with bounder y conditions as given above.
In the context of radial quantisation the time coordinate (the vertical direction) on the
cylinder turns into radial coordinate on the plane. The path integral becomes

$(rs)=0s
Uy los(o),ry] = / [Dgi] /¢> [D¢] exp(—S[o])¥; [pi(o), 7i] - (6.1.20)

(ri)=¢:

Thus the path integral is over fields on the annulus r; < |z| < r; with boundary condition
¢ (r;) = ¢; and ¢ (rf) = ¢ along with state insertion U [¢;(o), ;] on the inner circle. What
happens when we take r; — 0. We would obtain a state as in . The insertion of the
state turns into an operator insertion. We get

Vo [6n(0)] = / Déi],, exp (—S[6]) Oz = 0). (6.1.21)

This defines a local operator from a state. We call these operators vertex operators.

Remark 6.1.1. (i) From above considerations, it is clear that the state-operator corre-
spondence is true for any CFT defined on a cylinder R x SP~! which gets mapped to
R under radial quantisation.

(i) If we consider the state corresponding to the identity operator, the above map ([6.1.16))
gives us the vacuum state. We usually denote this state by |0;0) as above. Clearly the
conformal dimensions of the identity operator is (0,0).
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Example: the closed string

6.1.3 Operator product expansion and Mode Algebra

As we have seen, in radial quantisation, time ordering is replaced by radial ordering on the
cylinder. So whenever we talk about correlation function of operators, they are assumed to
be radially ordered in the following sense: for any two operators A(z) and B(z) we define
their radially ordered product to be the operator

_JA()B(w) if |2] > |w],
R(A(z)B(w)) := {B(w)A(z) i | > 2] (6.1.22)

If both the operators A and B are fermionic then a minus sign must be added to the second
expression owing to spin-statistics theorem. Let CZ?(w) denote a circle of radius r > 0 in
variable z centered around w and oriented counterclockwise and put C? := C?(0). Then we
see that for r; > |w| and ry < |w| we have

§. ACBw ~ f dEB@AR = § dRAE)BwW), (6.1.23)

for some r3 > 0, see Figure below for the contour deformations. In particular for r; > ry >
r3 > 0 we have

7{7@ dw]{z dzA(2) Blw) — fw dw]{z d=B(w)A(z) ]{w dwfz( ARAE)B()
- c S (6.1.24)

for some § > 0. We can now use this to derive the algebra of modes of operators from their
OPE. Let us derive the Virasoro algebra from the OPE (77?) of stress tensor with itself.
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Using ((6.1.24]), we have

L L ALy n L T
" ]{ 27?2 7{ 27rz [T'(2), T(w)]
_% n+1% dz Zm-i—lR(T(Z)T(w))
:]{ d_ww'fﬂrlj{ ﬁzmﬂ c/2 n 2T (w) n 0T (w)
cp 27 2 (w) 27 (z—w)t (z—w)? z-w

dw +1 -2 c
= —w" m+ Dm(m — Dw™
]{; << ) ) 2.3l

w 271
7'2

+2(m + Dw™T (w) + w™ 19, T(w)) (6.1.25)

= j{ d_w (i (m® —m) w™ !
2me \12

+2(m + D)™ T (w) + w20, T (w))

102 (m3 — m) Om—n +2(m + 1)Ly yp

dw m4n+1

J/

TV
(m+n+2)Lm+n

— _ - 3 —
=(m —n)Lyn + 75 (m m) Om,—n,

where we used integration by parts.

6.1.4 Hilbert space of the theory

Let us now describe the Hilbert of a conformal field theory. The state operator correspon-
dence dictates that corresponding to every operator there must be a state in the Hilbert
space of the theory. Suppose ¢(z, %) is a primary field with conformal dimensions (h, h).
Then there is a state |h, h) constructed as in . In particular, the vacuum vector |0;0)
is obtained from the identity operator. Clearly, the OPE (?7) with the stress tensor, it is
clear that

Loli, By = hli,B),  Lolh, h) = h|h, h)

= A 6.1.26
Lolh,hY = Lo, k) =0, n>0 (6.1.26)

We then construct the Fock space over |h, h) by applying L_,,, L_, with n,m > 0. The Fock
space thus obtained is called the Verma module over the primary |h, h). More precisely, the
Verma module has the structure of a tensor product

V(h,c) ® V(h,e) (6.1.27)

134



where
V(h,e) ={L_ L p,...L_y|hh) : k€N, ny,ng,...,ny € N}

_ T e - ! (6.1.28)
V(h,e) :={L_yy Ly .. L_m,|h,h) : £ €N, my,mg,...,my € N}

The states L_p, L py .- L_p,|hyh), L sy Ly - .. Ly, |h, h) are called descendents. The op-
erator corresponding to them is given by

k
Ly L_py...L_y|hh) < H amam O™ (2, 7)
i=1
' (6.1.29)
Lo Ly Ly, |hy ) H amlam2 O™ (z, 7).
]:1
The full Hilbert space is the direct sum
H(c.e) =P V(hc)@V(h,e) (6.1.30)

h,h

where the sum is over all primaries of the theory.

6.2 Torus partition function and modular invariance

Up until now, we have studied conformal field theory on the plane (and hence the Riemann
sphere by one point compactification) and the cylinder. We will now study conformal field
theories on the torus which is a genus one 2 dimensional Riemannian manifold. Infact one
can (and has to for string theory applicationsﬂ) study conformal field theories on any higher
genus Riemann surfaces. But physically in context of critical phenomenas described by con-
formal field theories, it is somewhat unnatural to study CFTs on genus higher than 1. On
the torus, it is equivalent to the plane with periodic boundary condition in both space and
time directions and hence has some significance.

Another motivation to study CFTs on higher genus Riemann surfaces is as follows: on
the plane we saw that the holomorphic and antiholomorphic sector completely decouples
and we may study the two sectors independently, infact we can treat them as different the-
ories. But this is very unphysical, such a decoupling is a feature of a conformally invariant
point on the infinite plane in the parameter space. The Hilbert space of the theory must
continuously deform as we move away from the conformally invariant point. This should
lead to constraints on the Hilbert space at the conformal point itself. Such constraints are
obtained from the consitency of the CFT on higher genus Riemann surface. In particular,
the requirement of modular invariance of the partition function of the theory on the torus
will give us one such constraint.

6We will see in later chapters that CFTs on higher genus Riemann surfaces are required to compute
higher loop string amplitudes.
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Figure 6.2: The fundamental region of the torus parametrized by (w;,ws). In the figure, we
have chosen the basis of the lattice to be (1,7) where 7 = 7 + ity = wo/w;.

6.2.1 Geometry of the torus

The torus can be obtained from the cylinder by cutting off the infinite ends of the cylinder
at some finite length and identifying the boundary circles. Alternatively, it can be obtained
as a quotient of the complex plane by some discrete lattice. It is useful to describe the torus
in terms of the quotient of the complex plane. For a pair of complex numbers wy,wy # 0,
consider the quotient space C/(Zw;, @ Zws) obtained by identifying points on the complex
plane as follows:

Z o~z 4 mw +nwy, m,n € Z. (6.2.1)

It is convenient to rescale and rotate the basis (wy,ws) of the lattice to the basis (1, 7) where

)

T = —. 6.2.2

- (6:2:2)
The smallest fundamental domain of this equivalence relation is called the fundamental region
of the torus, see Figure [6.2] The torus itself is obtained by identifying the boundaries of the
fundamental region. The complex number 7 is called the complex structure or the modular
parameter of the torus. Form the equivalence relation (6.2.1) we see that several choices of
the basis (wq,ws) determine the same lattice and hence the same torus. Indeed any integer
linear combination of wy,ws determines the same lattice given that the linear combination
is invertible by integer linear combinations again. More precisely

Wiy (a b\ [w
(wé) = (c d) <w2), a,b,c,d € Z. (6.2.3)

The inverse of this transforamtion is given by

(Z;) - adibc (—dc _ab) (Z;) : (6.2.4)
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The matrix i integral if and only if its determinant ad — bc = +1.

6.3 Conformal Field Theory with Boundary

Recall that the worldsheet of a closed string has the topology of a cylinder while that of an
open string is an infinite plane bounded by the lines traced by the ends of the open string.
Since a cylinder is conformally equivalent to th punctured complex plane, we can apply the
results of CFT on the plane to the worldsheet CFT of a closed string, but fro open string this
does not work since the worldsheet in this case has a boundary. In this section we develop
the theory of boundary conformal field theory (BCFT) and analyze some essential features
of the theory.

6.3.1 Stress tensor and boundary conditions

A prototype of a space with boundary is the complex upper-half plane
H:={z=24+1wyeC:y>0} (6.3.1)

The real axis is the boundary of this space. We will study conformal field theory on H. First
note that a global conformal transformation (¢ %) € SL(2,C) on C that maps H to H has to
have real matrix elements since it must map the real axis to the real axis. Thus the group
of global conformal transformations of H is SL(2,R). Let us now look at the local conformal
transformation. An infinitesimal conformal transformation is given by

z— 2 +e(2).

This transformation maps H to H only if €(z) = £(2) when z = z. This means that ¢ has to
be real on the real axis. This imposes strong constriants on the conformal algebra and the
two sets of Virasoro algebra for the holomorphic and antiholomorphic sector breaks down to
one set of Virasoro algebra as we will now see. Under conformal transformations from H to
H, the correlators must transform covariantly. The fact the correlators transform covariantly
is captured by the following theorem:

Theorem 6.3.1. Let TH be the stress tensor for a CFT on H. Then a given boundary
condition on a set of conformal primary fields ¢; is conformally invariant if and only if
T (z,0) = 0 or equivalently in complex coordinates

T(z)=T(2) on z=2.
Proof. Let X =[[;_, ¢i(wi,y;) be a set of fields. Let
t — ot + et (x),
be a transformation on H viewed as a subset of R? satisfying the following conditions:
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Figure 6.3: Infinitesimal transformation on H

1. e : H — R? is a continuous function.

2. The transformation (x,y) — (z,y) + (£°(z,y), e (z,y)) maps H to itself, i.e. for all x
we have ¢!(z,0) = 0.

3. e(x,y) is conformal in a semi-disc D (see Figure containing the point of insertions
of all the fields X.

4. Let K be a compact set such that D C K. e(z,y) is arbitrary in K - D.
5. &(z,y) is zero on R? — K.

Then using ([5.7.13]), the variation of the correlation function (X) in terms of the path integral
can be written as

/[D@](SX@‘S[‘I’] = — /8(K_D) ny(x)e, (x) (T () X) —i—/K eu(x)0, (T (2)X)  (6.3.2)

-D

where n, is the normal to the boundary 0(K — D) of K — D. The second term is zero on
account of the stress tensor being conserved due to conformal invariance of the theory. THe
first term gives us something physical. If suppose that the semi-disk D covers the interval
(a,b) on the real axis, then using n,, = (0,1) and the fact that e'(z,0) = 0, the first integral

/ o(z,0)(T° (2,0)X). (6.3.3)

Demanding that this be independent of ¢(z,0), we get the boundary condition for stress
tensor
T (x,0) = 0.

The secons relation follows from ([5.5.3)). [

The condition 7°!(z, 0) = 0 implies that no energy flows across the boundary. This constraint
is not enough to fix the boundary condition uniquely, but this gives us a class of boundary
conditions allowed by conformal invariance. Another important consequence of this is that
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now we only have one set of Virasoro generators. We will describe this by the doubling trick.
Define T'(z) in the lower half-plane by

T(z):=T(z), Imz<O0. (6.3.4)

Thus we have an analytic continuation of the holomorphic stress tensor to the whole complex
plane C. The Virasoro mode can then be given by the integral

1 1 _
L,=— [ dzT(2)z"™" + — [ dzT(2)z"" 3.
2 2T(2)2"" + 5 /—c ZT(2)z (6.3.5)

where C is a semicircular contour on the origin and —C is the same contour with opposite
orientation. The two integral can be combined and we can write

1
L,= 5 dzT(z)z"*! (6.3.6)

where now the contour is a circle around the origin and 7" is the analytically continued stress
tensor. These modes satisfy the Virasoro algebra. Similar doubling trick can be applied to
all other operators of the theory.

6.4 Applying Conformal Field Theory to String
Theory
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Chapter 7

The Polyakov Path Integral and
BRST Quantisation

In the modern formulation of quantum field theory, path integral is the most important
object since we can get all the observables of the theory from the path integral by simple
functional differentiation. In this chapter, we develop the string path integral and define the
observables of string theory — the string S-matrix. We then discuss the string spectrum of
the theory via the BRST quantisation procedure and prove the no-ghost theorem mentioned
in Chapter

7.1 Polyakov path integral

Given a QFT of fields {¢} with action S({¢}), the partition function is defined by the path
integral

7= / D) exp(iST{6}]). (7.1.1)

Since the action is real number, the exponential factor is just a phase and the path integral
diverges. To overcome this difficulty, we define the Fuclidean path integral by

7= / D) exp(—Ss[{6))). (7.1.2)

where Sg is the Euclidean action obtained by analytically continuing the time coordinate
t to Euclidean time t — itp. Under this change S — ©Sg. The Euclidean path integral is
thus analytically continued version of the origin path integral. From now on we will omit
the subscript E but all path integrals will be Euclidean.
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We will start with the Polyakov action[]

1 (07
Sp = I /EdadT\/Eg B0 X 05X, (7.1.3)
where ¥ is the string worldsheet. One can also add the topological term:
1
X = —/dadT\/ER, (7.1.4)
AT Js

where R is the Ricci scalar of the worldsheet. This is called the Fuler characteristic and
is independent of the choice of metric on X — hence the term is topological. This term is
clearly Diff invariant since R is a scalar. To see that it is also Weyl invariant, recall that
under gos — ghs = €27 gas, we have

VIR =/g(R-2Vw). (7.1.5)
Thus the Weyl variation is
Sw (VIR) = —2/gV?w. (7.1.6)

But note that for any vector v®,

VGV v = 0y (Vgv?) . (7.1.7)

This implies that
VIViw = /9V, (Vow) = 0, (/gV*w) (7.1.8)
which means that the variation is a total derivative and its integral over ¥ vanishes by Stoke’s
theorem if ¥ has no boundary. But this is true only for manifolds without boundary, i.e.

for closed string worldsheet. For open string worldsheet we have to add a boundary term to
make it Weyl invariant:

1 1
=— [ dod R+ — ds k 7.1.9
=g [ dwaryar+ 5 [ s (7.19)

where 0% denotes the boundary of ¥, ds is the proper time in metric g, along the boundary
and k is the geodesic curvature of the boundary

k= +t"n,Vt?, (7.1.10)

where n%, t* are the normal and tangent vectors to the boundary respectively, see Figure
below. The upper sign is for Lorentzian signature and lower sign is for Euclidean signature.
The extra term is required to make the FEuler characteristic term Weyl invariant. We will
now consider the path integral

Z = /[DXDg] exp(—95) (7.1.11)
where

S = Sp+ A, (7.1.12)

and the path integral is over every embedding X* : ¥ — R and every metric g,s on the
worldsheet. As already discussed, we take the metric to be Euclidean with (4, +) signature
so that the path integral is well-defined.

INote that now we are in Euclidean signature and hence the determinant of the metric is positive.
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t(,‘t!

Figure 7.1: The normal and tangent vectors on the boundary.

7.1.1 Fadeev-Popov gauge fixing

Path integrals as in ([7.1.2) for gauge theories necessarily diverge unless we remove the un-
physical gauge degrees of freedom. Removing the gauge degrees of freedom schematically
results in the following expression for the path integral:

Z::/\ED(M exp(—S[{¢}]), (7.1.13)

gauge

where Vgauge 1S the volume of the gauge groupﬂ. In string theory, the gauge group is G :=
Diff x Weyl. The string partition function thus takes the form

DXD
ZE/[v—g]e_S[X’g] (7.1.14)
g

Fadeev-Popov methods tells us how to divide by the volume of the gauge group. More pre-
cisely, it gives us a method to integrate against a measure on the field space X = {(X,¢g)}
which cuts through each gauge equivalence class exactly once as shown in Figure below.
This is equivalent to saying that we want a measure on X'/G where X is the space of fields
and G is the group of gauge transformations.

The idea is to separate the integral over the space of fields into an integral over a gauge
slice times an integral over the gauge group. To do this, we change variables carefully. The
method is called the Fadeev-Popov method and the Jacobian of the change of variables is
called the Fadeev-Popov determinant. Under a gauge transformation ¢ € G:

XMoo, 1) — X" (o', 7');
iy D07 Da? (7.1.15)
ga5<07 T) — ggﬁ (UI7T/> = ¢’ ( )%Wg'ﬁ((ja T)-

We denote gauge equivalent field to (X, g) by (X < gC). Note that the embedding does not
change under ¢. To choose a gauge slice is thus equivalent to choosing one metric g,5 on each

2one can prove this explicitly. See [16, Chapter ] for derivation.
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gauge slice gauge orbits

Figure 7.2: The box represents the space of all field configurations X. The blue curves
represent gauge equivalent field configuration while the red line represents gauge inequivalent
field configurations. It is called a gauge slice since it cuts through each gauge orbit exactly
once.

slice and removing the [Dg| with [D(] which is a measure on the gauge group. The choice
of metric g, on each gauge slice is called the fiducial metric. As discussed in Subsection
, we can always choose go3 = 0np locally on each slice. For now we keep g4 explicit.
This change of variable is only possible if there exists a measure on G. The variable change
incurs a Jacobian A;p[g] defined

Applg] = /[DC]5 (9—29° (7.1.16)

where (g — ¢°) is a delta functional which sets g = §¢ at every worldsheet point (o, 7). The
measure [D(] is assumed to be gauge invariant, we will demonstrate this in Subection ??
below. Now to change coordinates in the path integral, we insert

1= Applg) /[Dg]é (9—9°) . (7.1.17)
The path integral is

D(DXD
R N T

:/ [D¢(DX¢] Az (] -S[x¢4]

Vg FP

(7.1.18)

where we performed the Dg integral and renamed the dummy variable X — X¢. To
proceed, we need to prove the gauge invariance of Agp [gc].

Lemma 7.1.1. The Fadeev-Popov determinant Agp|g] is gauge invariant.
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Proof. We have
B[] = [ <15 (96 - &€
- / P18 (9-3) (7.1.19)
= / D0 (9 - 5")

= Aplg]

where we changed variable from ¢’ — (7! -’ =: (" and used the gauge invariance of the
measure [D(]. O

Now since [DX] is a gauge invariant measure and the action is gauge invariant, the path
integral becomes

. D(||[DX iy A

Z[§) = /%AFP[QE S[x,3]

7.1.20
a / [DX]App[gle 1) ( |

where the volume Vg of the gauge group is canceled by the [D(] integral. Thus now it is
clear that App|g| is the Jacobian for variable change.
Evaluating the Fadeev-Popov determinant: Ghosts

We want to evaluate the integral
Acblal = 1613 (5 -9 (7.1.21)

Since the gauge slice cuts the gauge orbits at exactly one point, ([] — gC) is nonzero only
for g = §. In particular, the gauge transformations ¢ near identity are the ones which
contribute. So let us take an infinitesimal gauge transformation with Weyl transformation
parametrized by w(o) and reparametrization do® = v®(o). The metric changes as

0gap = 2w(0)Jap + Vavs + Vgua (7.1.22)
where we used the fact that under reparametrization

do =vY(o)

7.1.23
5.@@& = Eygag = Vavg + VBUO” ( )

where L denotes the Lie derivative in the direction of the vector field v*. Thus locally, we
have

A=L[g] = / DwDu5 (20(0) s + Vs + V500 (7.1.24)
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The delta functional can be written as

d (2w(o)dap +Vavs + Vau,)

. . (7.1.25)
= /[D@] exp 2m/d o/ 9B [20(0) Gap + Vavs + Vva] | -
where %7 is a symmetric rank 2 tensor. Compare with
5(z) ~ / dp ¢¥iv (7.1.26)

So the FP determinant becomes
Arpld] = /[DvaDﬂ] exp (QWi/dQU\/Eﬁaﬁ 2w(0)dap + Vavg + nga]) . (7.1.27)

Performing the w integral is simple. It gives

/[Dw] exp (47ri/d o\ 38 apw(o ) =0 (2/d20\/§3‘“ﬁ§a5> (7.1.28)
= 6 (§asB*”)

Thus the [Dw] integral forces 3%° to be traceless:

B Gap = 0. (7.1.29)

We take this as the definition of 5%’ and then we have
Arpld] = /[DUDB] exp (27r2'/d20\/560"3 (Vavg + nga)) :
= /[DUDB] exp (47Ti/d20\/§ﬁaﬁvav5>

(7.1.30)

where we used the fact that 37 is symmetric. We now want to invert this to obtain App[g].
The usual Fadeev-Popov procedure is to realise that the path integral gives the inverse
determinant of the differential operator V, which takes vectors to symmetric tensors. But
there is a problem now. The operator V,, is now not between vector spaces of same dimension
and hence determinant of V,, is not defined. To remedy this, we do the following. We write

5gaﬁ - 2(")(0')904,8 + VofUﬁ + Vﬁva — Vﬂﬂgaﬁ + V,ﬂﬂgaﬁ

=2(P1v)op + 2w(o) + V,07) gag (7.1.31)

where

1
- (Va’l)g + Vg?)a — Vvv“*gag) . (7.1.32)

(Plv)aﬂ = 2
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Thus P, now projects to the symmetric traceless part of V,vg. Repeating the above argument

Antlg] = / [DvDf) exp <4m' / d%\/éﬁaﬂ(m)aﬁ) (7.1.33)

Now since v, is 2 dimensional and (Pv),g is traceless, symmetric which means the dimension
of the (P1v)qps space is 4 —2 = 2. Now recall the formula for the determinant of an operator
in terms of bosonic path integral:

/ [Dé1Dy] exp (z / diz gbl(a:)Agbg(a:)) = (det A)7L. (7.1.34)

In general if the fields ¢; are defined on a Riemannian manifold with metric g,, then we
replace d%x by ddx\/ﬁ. Another generalisation is replacing scalar fields by vector and tensor
field. That is precisely what we have. Thus we see that

Applg] = (4m) % (det )71 (7.1.35)

Thus
Arp[g] = (47)* det P. (7.1.36)

Finally recall the formula for the determinant of an operator in terms of grassmannian path
integral:

det A = / [Dtp; D] exp ( / ddxwz(:c)Awl(x)> (7.1.37)

for grassmannian variables v, 1,. Thus we can replace *? and v® by fermionic fields b*?
and c“ to obtain the FP determinant:

Appld] = / DD exp (-% / 2o\/G baﬁ(Plc)aﬁ)
= / [DbD] exp (—% / d*or\/§ baﬁ%cﬁ)

where we used the tracelessness of b° to remove the last term from (Pjc),, 5 A hat over V
indicates that it is a covariant derivative in the metric g. Writing

(7.1.38)

App[g] = /[Dch] exp (—S,) (7.1.39)
where )
Sylb, ¢, ] = %/dza\/g bV 44 (7.1.40)

is the ghost action and b*® and ¢, are called Fadeev-Popov ghosts the partition becomes
21g) = [ DXDUDC exp (=51, 6] = 5, b.c. ) (7.L41)
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where S[X, g] is the total string action (7.1.12). We now choose the fiducial metric g,z to
be in the conformal gauge:

Gap = €004 (7.1.42)
and the complex coordinates z = o 4+ 17,2 = 0 — i7. We see that
\/5 = e d%0 = %dQZ, V? = ¢°*V; = 2e V. (7.1.43)
The particular Christoffel connection we need is
', =0fora=z2z (7.1.44)
The ghost action is
Sy = % d2z%e2w (b..V*¢* + b::V?C7), (7.1.45)

where we used the fact that b,z is symmetric so that there is no b,z or bz, components. Note
that we lowered the index on b and raised it on ¢. The reason will become apparent in a
moment. We can rewrite S, as

1 _
Sg = % /dQZ (bZZVECZ + bggvzcz>
(7.1.46)

1 _
= % /d2Z (bzzagcz + bggazcz)

where we used I', = 0. So, we have ended up with an action which is Weyl invariant.
Note that b,. and ¢* (and the antiholomorphic counterparts) are neutral under Weyl trans-
fomation. But b** and ¢, (and antiholomorphic counterparts) are not. The ghost theory
is thus a CFT because we can cancel the factor due to a coordinate transformation by a
Weyl transformation. We have already met this CFT earlier. It is a CFT with central charge
c = —20.

Remark 7.1.2. For open strings, the worldsheet has a boundary and so the embeddings
X*" are embeddings with boundary. We can take the worldsheet coordinates (o, 7) to range
over a fixed subset of R%. In this case coordinate transformations must map the boundary
to itself. This means that v* satisfies

nav* =0 (7.1.47)

where n,, is the normal to the boundary. This translates to the condition n,c® = 0 on the
ghost field. This also means that ¢® is proportional to the tangent vector t*. In the ghost
CFT, we get a boundary term

/ ds n®bazoc”. (7.1.48)
%
If we impose the boundary condition

n“bust? = 0, (7.1.49)

the equations of motion remain unchanged since ¢® is proportional to t*. This is the boundary
condition we used previously.
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7.1.2 The Weyl anomaly

We fixed the gauge to get an expression for path integeral. But it still depends on the fiducial
metric g,5. Also we had residual conformal symmetry after gauge fixing which we didn’t
bother about. The path integral must also be invariant under the residual gauge symmetry
for a physical theory. That is

71§ = Z15) (7.1.50)

for ¢ a conformal transformation. We also want the correlation functions to be gauge invari-
ant:

(«-) = /[DXDch] exp(—S[X, g] — Sylb, ¢, g]) - - -

(7.1.51)
(e = (g
We have already seen the there is an anomaly in the trace T, :
(T,%), = =R (7.1.52)
a g 12 ) 1.

where R is the Ricci scalar for g and c is the central charge. Let us derive it by a different
route here. Under variation of metric

5oy, = —ﬁ Po/5(0)5g0s (T*(0) .., (7.1.53)

where A 55
s
Toslo) = —— : 7.1.54
ﬁ( ) \/@ 590‘5 ( )
Under a Weyl transformation, dgas = 2w(0)gas, so that
1
ow ()= 1 d*o+/g(0)2w(a) (T (a) - - )g (7.1.55)

Since we have preserved diffeomorphism and Poincaré, the trace must be invariant under
these. Also in flat background, the theory is conformally invariant. Thus we can only have

(T%) = 1R + as, (7.1.56)

where as is a constant. This is an example of a counterterm. But we can add a term in the
action, analogous to a cosmological constant, of the form

a
Se = —ﬁ d*c /3. (7.1.57)

This term is not Weyl invariant and adds a constant —as in the trace of the stress tensor.
Thus we can assume that ay is zero. More than two derivatives in the metric is not allowed
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in the trace because T has conformal dimension 2 and taking derivative increases conformal
dimension by 1. We now calculate a;. We have

e <T25> == %QZER'

Taking covariant derivative gives (dropping (---) )
VL = SV (g.2R) = SO.R (7.1.59)
where we used the fact that VZg,; = 0. By conservation of T
VT, = —V°T., = %@R. (7.1.60)

We now compare the Weyl transformation of LHS and RHS. We know that under Weyl
transformation

Jas — € Gap = Gop (7.1.61)

we have
VIR =g (R-2Vw). (7.1.62)

This implies
(1+e*)R =R —2Vw

7.1.63
— dwR= —2V%w. ( )
We now expand around the flat metric, so that
V2w ~ 40,05w. (7.1.64)
Thus RHES of (|7.1.60|) transforms as
4a10%0;w. (7.1.65)
Now, under a general conformal transformation (infinitesimal)
0x® =e%(z) (coordinate transformation) (7.1.66)
2w = 0e* + (07)  (Weyl counteraction) o
the conformal Ward identity gives
0T, (2) = —%0352(2) —20.6°T,, — £°0. .. (7.1.67)
The last two terms are the variation due to coordinate transformation. Thus
SwT., = —gazw (7.1.68)
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where we used 2w = 0e*. Thus upto linear order in w
5WV2TZZ ~ (5W8ZTZZ
= ——0%0w
Thus we get
a; — ———.

Critical dimension: In the worldsheet CFT of D bosonic fields X*#, the central charge is
D. Addition of ghosts adds central charge —3(2-2 —1)? + 1 = —26. So the Weyl anomaly

cancels only when
c=D—-26=0

which gives the critical dimension D = 26.

Weyl anomaly in boundary CFT

In presence of boundary, there are extra terms in the variation of (---),. Let us start with

1
Ow In(--- )y = 70w (- )
<. .. >g
05
= 2 §5q%8
dgs g
1 oL
=—— [ d% g{wanja + 0o (—59 )]
o s \/_ ( ) ( ) 8(3a9ﬂ7) By
1 1 oL
=—— [ & R - — ds ————~
o ), oy/gw(o) (R + as) o /az 55 (aagﬁr)w(s)gm
where L is the Lagrangian given as
L= 0,X"0"X, + R+ 0,k
where k = —t%n,V,t° is the geodesic curvature on boundary. One can then show that

1 1
dwln(---), = ~5 /2 d*o\/gw(o) (a1 R + ag) — o /az ds (az + ask + azn®0,) w(s).

We can add a counterterm of the form
Sct = / dQO'\/gbl + / ds (bg + b3]€) .
b B>
One can check that

O Set = 2/ d2a\/§b1w(a) +/ ds (by + b3nV,) w(o).
> )
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Thus choosing by, by, bs appropriately, we can set as,as,as; = 0. To fix a4, we use the fact
that consecutive Weyl variations must commute. This is called the Wess-Zumino consistency
condition. We have

a a
Sw, (O, In(---)g) = ?1 . d2a\/§w2(0')v2w1(0') — ﬁ /az ds wan®Ogwi

aq 2CL1 — Q4

= d%\/gaawg(a)a%l — —/ ds won®Ogw
) 27 o%

(e

The first term is symmetric under w; <> wy but the boundary term is not. Thus we must
have

ay = 2@1.
So even in open string CFT, we do not get new Weyl anomalies.

The Wess-Zumino consistency condition also shows that the central charge has to be a
constant, which we have already seen in Theorem [5.7.16]|

7.2 The String S-matrix

In the previous sections, we described how to consistently define the gauge fixed string path
integral. We now want to formulate the scattering amplitude of string states. We will not
be bothered about calculating path integrals in this section, so we will use the original string
path integral (?7?) to describe the notion of string amplitudes. Let us start with the string
action: where

S[X, gl = Sp[X, g] + Ax (7.2.1)

where . .
= — [ dodr\/gR+ — ds k 2.2
X4 /2 Vo 2w /az ’ (72.2)

and A\ is some coupling constant. To start talking about scattering amplitude, we must first
find out how strings interact.

7.2.1 String interactions and sum over woldsheet topologies

What are the ways strings can interact? A noninteracting open/closed string can be repre-
sented by a worldsheet with topology of a sheet/cylinder as shown in Figure ?? below. Two
strings might join to form one string and so on. See Figure 77 for some possibilities. But is
it possible to add interactions terms in the Polyakov action to introduce these interactions?
It turns out that it is not possible to do it so that the symmetries are preserved. What is
the way out?

Notice that the worldsheets in the interactions in Figure ?? have different topology. So a
possible way to introduce interactions in the theory is to introduce a new data in the path
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integral: sum over worldsheet topologies. So we define

DX*Dg*
Zring = D DX "Dy - 9] -seimem) (7.2.3)
topologies g
on ¥

where we have emphasized that X* : ¥ — R? is an embedding of the worldsheet, ¢~ is the
metric on the worldsheet and the action depends on the worldsheet in the sense that it is an
integral over the worldsheet. Sum over topologies also gives us the perturbative expansion
of the string S-matrix as we now describe. The term Ay in the action is topological and only
depends on the topology of the worldsheet. Thus we can write

Y e [DXDyg| _
Zstring = ' € )\X(E)/Te SP. (724)
topologies
on ¥

Thus different topologies are weighted by e*. Now in going from Figure ?? to Figure ??,

we have added an extra strip. The Euler characteristic of the strip is 1 using the famous
formula y = V — E + F where V, E, F' denote the number of vertices, edges and faces
respectively. Adding an extra strip thus decreases the Euler characteristic by 1 since there is
an extra circular edge. This corresponds to an extra factor of e* and hence the corresponding
amplitude is e*2. Similarly for closed string adding a handle increases the genus by 1 and
decreases Y = 2 — 2g, where g is the genus — the number of holes in the worldsheet, by
2, so that the amplitude for emitting and reabsorbing a virtual closed string is e*. Thus
perturbative expansion is defined by expansion in

93 ~ Gc ™~ 6)\. (725)

We will show later that A is not a free parameter.

Clasification of string theories based on interactions

Another important information that we get from the possible string interactions is a classi-
fication of possible string theories: based on the topologies of worldsheet we include in the
sum there are four different string theories:

1. Closed oriented:

String amplitudes

Now that we know the interactions of strings, let us discuss how to define the amplitude for
a given process. Consider two closed strings interaction as shown in Figure 7?7 below. Before
we attempt to do make any definition, let us recall how this is defined in field theory. In
field theory we calculate correlation functions (¢ (z1)... ¢, (x,)). It is easier to calculate
the Fourier transform of this - the momentum space correlation functions. The special thing
about momentum space correlation functions is that the external legs can have arbitrary
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momenta i.e. they can be offshell. The LSz reduction formula then gives the scattering
amplitude.

Can we compute offshell string amplitudes? The current answer is - it does not make sense.
To see this recall that the correlators of only gauge invariant operators make sense in a
gauge theory. Now if we have gravity in the theory, diffeomorphism is a gauge symmetry
and hence the coordinates of operators are not well defined. There are no local offshell gauge
invariant observable in a theory of quantum gravity. Now in string theory, we will see that
Weyl invariance of the amplitude will set the external string states on-shell which in position
space turns into a statement that we cannot fix the position of external fields. To see this
note that if we want to fix the position of external field to X, then we need to insert a delta
function

5P (X (o) = Xo) = / A7k ik xto)-x0) (7.2.6)
(2m)P
which involves all momentas inconsistent with Weyl invariance, since Weyl invariance as
noted above and shown below fixes the external string state onshell. This also means that
we may not be able to compute string scattering amplitudes at finite times. So we, for now,
focus on string S-matriz defined to be string amplitude where the external string states are
taken to X° = 400. The external legs are represented by cylinders which can be described
by a complex coordinate w with Re(w) going around the cylinder and —27t < Im(w) < 0.
Re(w) is periodic and we have have a string state and the scattering process would mean
t — +oo. Tt will turn out that this limit is equivalent to X° — +o0o0. The end Im(w) = 0 is
the end on the world sheet. Now we can map the cylinder to a disk via the conformal map

z=e M e <z <1 (7.2.7)

and the circular end at Im(w) = —27t maps to a circle of radius e?™. Thus under this
map the worldsheet maps to a sphere with small circular holes at external states. When
we take t — 400, these holes shrink to points. Thus the worldsheet reduces to sphere with
punctures at external states. Similarly for open string, the long strips...

To write the amplitude as path integral we need to specify the external string states. Here the
state operator correspondence comes to our rescue: the states at the punctures/dents can be
represented by local operators, that is, the vertex operators V;(k) where j defines the internal
state and k* is the spacetime momenta. Incoming and outgoing states are distinguished by
sign k%; incoming state has k* = (E, k) and outgoing states have k* = —(E, k). We can
restrict our attention to compact topologies indicating localised string interactions. Thus we
see that an n-particle string S-matrix element must be defined as

Sjl . jn (kla U 7kn) = Z / %G_SP_AX H / dQUi V9 (Uz)Vh (km Ui) (728)

compact
topologies

A few comments are in order about this definition:
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Remark 7.2.1.

1. In a typical term in the sum over topologies, the path integral over X results in the
correlation function of the product of vertex operators in the CFT on the given topology.
For example, at tree level, the closed string S-matrix would involve the correlation
function of the vertex operators representing external string states on the sphere S2.
We will develop methods to calculate these correlation functions in subsequent sections.

2. The vertex operators have been integrated over the whole worldsheet to make the
S-matrix Diff-invariant.

3. Depending on the type of string theory we are doing calculations in, the sum over
topologies can include unoriented worldsheets and/or worldsheets with boundary.

4. In general, one may also include disconnected topologies which would physically mean
two or more widely separated sets of particles scattering independent. But we will
focus on connected topologies.

Let us now discuss how to sum over topologies. We have to sum over all topologies. The
classification of all 2d topologies is well known: oriented 2d manifolds without boundary is
classified by the Euler characteristic

X =2—2g, (7.2.9)

where ¢ is the genus of the surface i.e. the number of holes or handles. If we include
unoriented surfaces with boundaries, then we also have to specify the number of bound-
ary components b and number of crosscaps ¢ to classify 2d topological spaces. The Euler
characteristics is then given by

X=2-29—-b—c (7.2.10)

Some examples are shown in Figure 7?7. A boundary component is introduced in the surface
by cutting out a disk. For example, a sphere with one boundary is a disk, with two boundaries
is an annulus and with three boundaries is a pair of pants. Crosscap is a protype of an
unoriented surface...

7.2.2 Vertex Operators

The most important ingredients in the string S-matrix are the vertex operator insertions
which represent asymptotic string states. To make the string S-matrix well-defined, these
vertex operators must be Diff x Weyl invariant. We want to find out the constraints for
the vertex operators to be Diff x Weyl invariant for general topology of the worldsheet.
As already announced before, the constraint turns out to be that the asymptotic states be
onshell.
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Vertex operators on flat worldsheet

Let us start with the tachyon vertex operator:
Vo= Qgc/dQJ g e* X,

where we introduced a coupling g. which will turn out to be related to the dilaton. On flat
worldsheet, this becomes

I/b:gc/dQdeZk'Xg.

This must be Diff x Weyl invariant and in particular conformally invariant, d*z has con-
formal dimensions (h,h) = (—1,—1). Thus e*¥ must have conformal dimensions (h,h) =
(1,1). By our calculation in Corollary ??, we get

/1.2
O‘f = 1. (7.2.11)

Onshell, this gives
4
m?=—k* = ——.
a/
This is exactly what we got in lightcone quantisation. The first excited state vertex operator
on flat worldsheet is given by

2 o
Vi(k) = 2% / d*z 8 0X"OX"e* g

O{/

The conformal weights of $0X*0X"e*Xg is

- a'k?
h=h=1
* 4
Conformal invariance onshell then implies
m? =0,

again agreeing with the lightcone quantisation result. The goal is now to do the same on
curved worlolsheets. As we will see, this will give us more constraints.

Vertex operators on curved worldsheet

The expression for vertex operator in for curved background is only schematic since we
did not explicitly derive it from the state-operator correspondence. Note that the tachyon
vertex operator on flat background is just the integral of normal ordered e*X. So if we can
generalize the normal ordering to curved background, the we can define the vertex operator.
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The appropriate generalisation is to generalize the normal ordering defined in. To this, define
the renormalised operator

Lf s o, N0 0
Fl, i= - A F. 2.12
= e (2 /d 7T A9 SRo)5x, (a’)) (7:212)
where ,
Ao, o) = % Ind? (o,0") (7.2.13)

and d (o, 0’) is the geodesic distance E| between o, o’. For the flat worldsheet,
& (0,0") = |z — 2 (7.2.14)

and the renormalised operator is simply the normal ordered operator This is consistent with
the tachyon vertex operator on flat background. As in normal ordering, in renormalised
operator, we sum over all ways of contracting pairs of fields in F i.e. replace the pair by
A (o,0"). Note that A (o,0’) has singularity as ¢ — ¢’. This singularity cancels singularity
from self-contractions. We can now use this renormalised operator to defined renormalised
vertex operator. For example, the tachyon vertex operator on curved worldsheet is defined
as

Vo = 29, / d’o/g [e*¥] . (7.2.15)

The next vertex operator that can be constructed using derivatives of X in a Diff-invariant
way is

Vi = % Poy/g{(9% s + i€ a,,) [0.X"05X MY + oR [e*¥] } (7.2.16)

where R is the Ricci scalar of the worlsheet, s,,,a,,, ¢ are a constant symmetric matrix, a
constant antisymmetric matrix and a constant scalar, ¢*” is an antisymmetric tensor satis-
fying \/ge'? = 1. The factor of ¢ in front of €% is because 0, X*03X" contains exactly one
time derivative when contracted with €*? in the Minkowski signature. So when we continue
to Euclidean signature, we put a factor of . We now want to check if renormalised vertex
operator defined using above rule is Diff x Weyl invariant. Diff-invariance of obvious since
the vertex operators are integrated over the worldsheet. To check Weyl variation we use the
identity

J )
dXH(o)6X, (o)

1
SwlFl: = [owF]: + §/d20d20'5WA (o'c") [Fs- (7.2.17)
This is easily derivable using product rule. Let us calculate the Weyl variation of V. We
have where we used dwgas = 20wgqp. and dwe*X = 0. Now, when o and o’ are “close” we

have
&* (0,0") = (0 — ¢')? exp(2w(0)). (7.2.18)

3Recall that the geodesic distance between two point is the length of the geodesic joining the two points
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Thus

!/

A(o,0') =~ dw(o) + % In (o — ')’ (7.2.19)

so that
dwA(o,0) ~ o'dw(o). (7.2.20)

We then have
(SWVE) :290/(1 0—5 \/_[ kX (o }
BT
+1\/§/d20’d20”5 A (o', 0" 0 0 ()]
2 W ’ OXH (g/) 6XM (0//) r
o[ oy 41 (7201)
1 .
+§\/§/d20/d20’/5WA (0/’077) (_kQ) (52 (J _ U/) 52 (CT . 0//) [elk'X(U)]r}
2
ZQQC/ {\/_2(5(,0 [ ik-X (o ] _ %\/g(swA(U, o) [6ik~X(a)L}
2
:2gc/d20\/§ (25w — %5WA(U’ a)) [eik-X(g)L

Thus 6wV = 0 if and only if
k= — (7.2.22)

O/
which is same as the constraint that we obtained for the flat worldsheet. We will work out
the conditions that Weyl invariance imposes on the vertex operator V.

Theorem 7.2.2. The Weyl variation of Vi is given by

owVi = % / o /g0w { (9°° S + 1€P Ay) [0 X105 X e ] + ¢RF [e*X] }  (7.2.23)

where
Spw = =k + Kok 5, + Kk, — (147 kb ” + Ak,
Ay = —k? ay + kykPay, — kK a,,, (7.2.24)
F = (v = DR + sy ks — 111+ 9K,

where v = —32.

Proof. m
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Thus ow Vi = 0 implies
Sw=A,=F=0 (7.2.25)
since these constants appear as coefficients of linearly independent operators. We should

note that this vertex operators are not all independent for general s,,, a,, and ¢ relation

9
-z 7.2.26
, 3 ( )

T

[V2X,u€ik~XL _ iaT/vkr“R [ez’hX}
implies equivalences between these constants. The relation is not easy to derive - we do not
include proof of this but refer to [0, Section 2] for some details used in the proof.
Proposition 7.2.3. The vertex operator Vi s tnvariant under

Suv = S + &k + K&y,
Ay — A+ Eukin — Ko, (7.2.27)
6 — 6+ k¢

wirno

where 7 = —
Proof. O]

To see what conditions Weyl invariance puts, we need to consider independent vertex op-
erators by taking into account the equivalences in Proposition [7.2.3] To remove the extra
degrees of freedom from s, a,,, we fix a £ and ¢ as follows: for each k choose a null vector
n* satisfying n - k = 1, then restrict to s,,, a,, satisfying

n*s,, =0, n"a, =0. (7.2.28)
This fixes £, and §, freedom since

m

e, (7.2.29)

and similarly ¢, = (n-¢)k,. We now solve (7.2.25). Since S, = 0 we must have S, n*n” = 0.
This implies, using the expression ((7.2.23]) that

I+~
1 C (7.2.30)

¢ =
This fixes the constant ¢. Next S, n* = 0 in
k'S, = 0. (7.2.31)
Next A,,n" = 0 (holds because A,, =0 ) implies

K a,, = 0. (7.2.32)
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Finally S, = 0 implies

k* = 0. (7.2.33)
In total, the Weyl invariance of the vertex operator implies
k=0
Ksw =0, k'a,=0 (7.2.34)
1 + " g
¢ - u'

The first condition is the mass-shell condition — this vertex operator corresponds to the
massless state. The second condition says that the polarization of the fields s,,,a,, be
transverse to the momenta — this is the expected condition for a physical massless gauge
symmetry emerging from worlsheet gauge symmetry. The vectors &,,(, parametrize the
gauge transformations of the tensor fields s,,, a,, respectively.

Open string vertex operators

7.2.3 Calculating the path integral

In this section, we start with a systematic discussion of how to calculate the string S-matrix.
Recall that the string S-matrix with n asymptotic states was defined to be

[D¢pDy|
Sjlan-ujn (kh SRR Z / ¢ g exXp (_Sm — /\X)

compact

topologies (7 2 35)

X H/dzam/ i)V, (ki, 0;)

where Sy, is a general ¢ = ¢ = 26 matter CFT with fields ¢, x is the Euler characteristic
of the worldsheet, Vj, are the vertex operators corresponding to external asymptotic states
7:- To calculate this path integral we would like to identify a gauge slice. Locally, we did
this by fixing the metric in our discussion of Fadeev-Popov ghosts but globally, this does not
account for the complete gauge fixing as we will see. Let us start with the point particle
example.

Point particle:

The point particle partition function is

7 = / [DeDX]exp {—% / dr (e’lX“Xu + em2)1 . (7.2.36)

Consider the topology of a circle so that x maps onto a closed loop in spacetime. The
parameter 7 can be taken to be 0 < 7 < 1 with ends identified. X*(7) and the einbein e(7)
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are both periodic on 0 < 7 < 1. Now suppose we fix the gauge to be ¢ = 1. The gauge
transformation corresponding to this gauge choice satisfies

e (1) = 6(7')(?)—:_/ (7.2.37)

which implies
/ dr e(T (7.2.38)

where we assumed that 7/(0) = 0. But now 7/(1) # 1. Infact

(1) = /Ot e(t)dr = ¢ (7.2.39)

where /¢ is the length of the circle. So the coordinate region of 7 is not preserved. This means
that gauge fixing can be done by a one parameter family of diffeomorphisms parametrized
by ¢. Suppose we want to preserve the coordinate region 0 < 7 < 1. Then we have

/O le' (') dr' = /0 1 e(r)dr. (7.2.40)

Thus if we want to fix ¢’ to a constant value, then it is constrained to be ¢ = £. This means
that not all einbeins on the circle are diff-equivalent. This is intuitively clear — diffeomorphism
transformation cannot change the length of the circle. They are parametrized by ¢. So we
see that there are two choices for gauge fixing:

e /=1 0<7<l (R,
e c=/( 0<7<1, [(€R,.
Thus the path integral turns into an ordinary integral over £.

Definition 7.2.4. The space of gauge-inequivalent field configurations for a fixed topology
is called the moduli space of fields.

Now note that the gauge choice e = ¢ is preserved under translation
T — 7+ v(mod 1). (7.2.41)

The corresponds to choosing a point on the circle with 7 = 0. Thus in either of the gauge
fixing, there is some residual gauge symmetry which is not fixed by this gauge choice. This
residual gauge group is called the conformal Killing group (CKG) and the generators of this
group are called conformal Killing vectors (CKV). Thus to calculate amplitudes, we need to
identify the moduli space and the CKG.

Let us now turn to the string S-matrix. As we saw, string S-matrix involves sum over
topologies of the worldsheets which provides perturbative expansion of the scattering ampli-
tude. Let us start discussing the moduli space and CKG for some initial topologies of string
wolrdsheet.
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0

Figure 7.3: The sphere constructed from two disks. The north and south poles are the
centers of the two disks.

Positive Euler characteristics

There are only three Riemann surfaces with positive Euler characteristics — the sphere S2,
the disk D and the real projective plane RP?.

The sphere: This topology corresponds to the tree level closed oriented string. The path
integral for the amplitude over metrics and spacetime embeddings on the Riemann sphere is
then given by

D¢D i
S (s ob) = e [ - 9 oxp (—5a) ] [ En/a@Vi o) (1242)
=1

since xy = 2 for S%. To perform the inner integral over S?, we need to construct coordinate
patches on the sphere. The sphere can be obtained from the complex plane C by one-point
compactification. That is by adding a point at infinity to the complex plane: C := CU {oo}.
It can be covered by two patches. To describe it choose a real number p > 1 and consider
disks |z| < p, |u] < p. Join them by identifying points such that

u=1/z (7.2.43)

The two coordinates u, z covers the upper and lower part of the sphere as shown is Figure
below. The overlapping region satisfies ((7.2.43)). Thus the transition maps are u™' o z =

27V owu = 1 which is trivially holomorphic. Any metric on S? can be mapped to a metric
on the plane using the stereographic projection and as we have already seen, we can always
make a metric on the plane flat using a gauge transformation from G. Thus the general

conformal metric on S? is

ds® = exp(2w(z, 2))dzdz, (7.2.44)
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for some function w. In the u patch, the metric transforms as

020z
1
= T exp(2w(z, 2)) (7.2.45)
= |2|* exp(2w(z, 2)).
Thus g,z is nonsingular at u = 0 (corresponds to z — oo ) if
lim |z|*| exp(w(z, 2))| < oo. (7.2.46)
Z—00

Thus any w(z, z) satisfying ([7.2.46)) defines a metric on S?. The round metric on S? of radius
r and Ricci scalar curvature R = 2/r? is

472 472
ds® = ————dzdz = ————duda. 7.2.47
° (14 2z)2 e (1+uﬂ)2uu ( )
We now look at the CKG. As we already discussed in Subsection [5.3.3] the conformal trans-
formations on the sphere generated by the Witt algebra

n—&-lg
0z (7.2.48)
{lnyln} = (M +n)lpin.

l, =z

We also saw that not all of these generators are globally defined. Indeed only Iy, [+ is globally
defined which generates the global conformal killing group

PSL(2,C) 2 SL(2, C)/Zs. (7.2.49)

Thus the for ¢KG is PSL(2, C) and to calculate the tree level amplitude we need to integrate
over PSL (2,C).

Real projective plane: This topology corresponds to the unoriented closed string tree
level amplitude. To see this, note that the real projective plane RP? can be obtained from
the sphere by identifying antipodal points: identify points z, 2’ related by

Z=—1/z (7.2.50)

Since there are no fixed points under this identification, there is no boundary of this manifold
but it is unoriented. There is again no moduli for this space and the CKG is the subgroup
of PSL (2,C) which respects . Indeed, that subgroup consists of matrices (29) €
SL(2,C) such that

az’ +b 1
e +d  aztb
et (7.2.51)

—a+ bz cZ+d
= ? — = - 7
—c+dz az+b
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One can show that the only solution to this is @ = d,c = —b with |a|?> + |b|*> = 1. This
subgroup is precisely SU(2). Modding out by Z,, we obtain SO(3) = SU(2)/Z,.

The disk: This topology corresponds to the open string tree level amplitude. The open
disk D is conformally equivalent to the upper half plane under the map

qg-H—D
(7.2.52)

2miT

ThH— e

Moreover the kG for H is PSL(2,R) since one needs to preserve the boundary of H. Thus
we need to integrate over PSL(2,R) to get open string n-point tree level amplitude.

Zero Euler characteristic

Let us start with coordinates o', o2 in the region

0<o'<2m, 0<o?<2m (7.2.53)

The fields X* (o', 0?) and g,p(c', 0?) are periodic in both directions. The torus is described
by the identification

(01,02) = (01,02) + 27 (m,n); m,n € Z. (7.2.54)

Theorem 7.2.5. Let gop be a metric on the torus described by the coordinates o*, % € [0, 2]
with (o*,0%) = (0',0%) + 2nZ?. Then there exist coordinates o',5° € [0,27] satisfying
(o1,0%) = (¢4,52) + 2nZ* such that

ds® = |d&* + 7d5*|" (7.2.55)
with a complex constant .

Proof. We first make the torus flat using a Weyl transformation as described in Remark
3.1.1L The flat torus can be described in complex coordinates as a parallelogram spanned by
1 and some 7 € C\R with the identification

z =2 z+2mm,

7.2.56
2= z42mnt; z=a+br € R+Rrym,neZ. ( )

Clearly on the parallelogram, the metric can be written as dzdz. Taking coordinates on the
torus to be ', 52 such that z = &' 4+ 762 we see that dzdz takes the desired form. O

This theorem implies that the moduli space of gauge inequivalent metrics is parametrized
by a complex parameter 7. Observe that the metric ([7.2.55)) is invariant under 7 — 7. Thus
we can restrict to Im(7) > 0. Hence the moduli space is parametrized by 7 € H := {7 =
x+1iy € C:y > 0}. The parameter 7 is called the Teichmiiler parameter or modulus. There
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are further identifications. Replacing 7 by 7+ 1 and 7 by —% gives the same torus since this
only modifies the identifications of points on R + R7 by changing (m,n) — (m — n,n) and
(m,n) — (n, —m) respectively. These two transformations

(7.2.57)

generate the modular group PSL(2,Z) := SL(2,7Z)/Z,. Thus the moduli space of metrics on
the torus can be identified with H/PSL(2,7Z) which is the fundamental domain of H defined
below:

Definition 7.2.6. If I is a subgroup of SL(2,7Z) and F C H is a closed set with connected
interior, we say that F is a fundamental domain for I' (or I'\H ) if

(i) any z € H is I'-equivalent to a point in F;
(ii) no two interior points of F are I'-equivalent;
(iii) the boundary of F is a finite union of smooth curves.

As an example let 'y, be the subgroup of SL(2,Z) given by
ro=d(LY")inez (7.2.58)
A fundamental domain for I' ) \H is given by
1 1
F = {z eH: ) < Re(z) < 5} (7.2.59)
Theorem 7.2.7. Let
1
F = {z € H: |Re(z)| < 3 |z] > 1} (7.2.60)
Then F is a fundamental domain for the action of SL(2,7Z) on H.

Proof. See Theorem 3.2.2 of [11] O
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0 1 1
2

Figure 7.4: Fundamental domain for SL(2,7Z)

The modular group SL(2,Z) acts on H as

ar +0b a b
i L(2,7). 2.61
T () esen (72:61)

To integrate over F, we need an SL(2,Z) invariant measure.

Theorem 7.2.8. The measure

W= )2

is SL(2,R) invariant.

Proof. Under SL(2,R),

cr+d’ d

Then 0 .
dr' = 2 dr = dr.
4 dr (e + d)? T



Thus

1
dr'd7 = drdt
T'dT or +dpt TdT
It is easy to check that
Imr
I " =
() = P
Thus
d>*r’ d*t

]

In general, it is not possible to bring this metric to unit form such that the new coordinates
also satisfy the periodicity condition ([7.2.54)). Suppose under a coordinate transformation
to 0%, the metric reduces to d,3. Then in general

g% = 0%+ 21 (mu® + nv®) (7.2.62)

where u® and v® are general translations. By rotating and rescaling the coordinate system,
we can take u = (1,0) which leaves us with two real parameters v',v?. If we redefine
2z = o' + i02, the metric is dzdz and the periodicity is

2= z+21m(m+ nr)

where 7 = v 4402, Thus the torus is a parallelogram in the z-plane with periodic boundary

condition. The moduli space is again parametrized by two real parameters v!, v?,

We now look at CKG. The rigid translations
o = o% 4+

where v* € R? leaves the metric and periodicity invariant. Thus this 2 parameter subgroup
isomorphic to R? is not fixed. Moreover the discrete transformations o® — —o® and

(o', 0%) — (=o', 0?) with 7 — —7 in the unoriented case are also part of CKG.

7.2.4 Moduli space of higher genus surface

As already discussed, the topology of a 2d surface is classified by the Euler characteristic. In
case the surface is oriented and closed, the genus classifies the surfaces. Let G, be the space
of all metrics on a 2d surface with topology g. The moduli space is then

Y
(Diff x Weyl),

M, = (7.2.63)

Then there are the residual symmetries, the CKG. If there are vertex operators in the path
integeral, then one way to fix the CKG is to specify the coordinate of the vertex operators.
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For example, for torus, the R? CKG can be fixed by fixing the position of one of the vertex
operators. Additionally the Zy from 0% — —o® can be fixed by restricting another vertex
operator to half the torus. In general if there are n vertex operator positions over the
worldsheet > then the moduli space at topology ¢ is

Gy x X

= . .2.64
Maun (Diff x Weyl),, (7.2.64)

This space is called the moduli space of metrics. We now want to find the dimension of M,
so we construct a local model of M ,,, that is, its tangent space at some g,g. To do this we
look at the infinitesimal variations ¢’g,s of the metric orhtogonal to the variation dg,s along
the gauge orbit (see Figure below).

gauge slice gauge orbits

Figure 7.5: Gauge inequivalent infinitesimal variations of the metric

Recall that an infinitesimal Diffx Weyl variation dg,s of the metric is given by
O0Gay = —2 (Pléa)aﬂ + (20w — V- 0) gap (7.2.65)

so that we have
/d20\/§5'ga'8 [—2 (P160),5 + (20w — V - 50)ga5] =0 (7.2.66)

Note that we are using the inner product on tensors given by

(T Rg,..5,) = /dQU\/ETmmanRar--an' (7.2.67)

To proceed further, we will need some results about the operator P;. Recall that P; acts on
vectors and gives traceless symmetric rank 2 tensors:

1
(P1v) 4 = 5 (Vavg + Vs — gagV,07) . (7.2.68)
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Indeed, we can define a more general operator P, which maps traceless symmetric n-tensor
to traceless symmetric (n 4 1)-tensor: let v,,..q, be a traceless symmetric tensor. Define P,

by

_ n B

= V(oq Voag-opy1) — n——i-lg(ala2 va az-Qni1)s (7.2.69)
where () indicates the symmetrization of the indices and |3| indicates that the index (3 is
not included in the symmetrization. This tensor is symmetric by construction. Contracting

with g2, the first term becomes

(Pov)

QpQn41

1o a1 1
g™ 2V(Oé1 Vagant1) = 9 e va(a2'"an+1) + va2v(041043~~an+1) + Z vaiv(al"'anJrl)

n+1 by
= n—Qi- 1ngﬁag...an+1,
where we have used the symmetry and tracelessness of v. The second similarly becomes
9 G(aras vaﬂ agany) = ﬁg“lmgala2 ngﬁas...anH + % M2G s ngﬁmm...anﬂ
= %ngﬁag...anﬂ.
Formally, we can define the transpose of P, using the inner product :
(u, P,v) = (PTu,v). (7.2.70)
We claim that for u,,...q,,, a traceless symmetric tensor, define PT by
(Plu), o ==Vt a g, (7.2.71)

This inherits the symmetry and tracelessness of w.
(u, P,v) = /dza\/ﬁual'"a"+1 (ani))m...a,l+1
= /d2a\/§uo‘1'"o‘"+1 <Valva2...an+1 — Lgalazvﬁvﬁasmanﬂ)
n+1
= — / d20\/Evalumma"JranzwanJrl
= —/dza\/ﬁvalual"'a”“vaz---anﬂ

= /dQJ\/ﬁ (PnTu)an%Jr1 Vag-ani
= (PTu,v).
Returing back to (7.2.66|), we have from orthogonality

/d%—\/g (=2(Pd'g), 00" + 0'gapg™ (26w — V - 60)) =0 (7.2.72)
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For arbitrary do and dw, this implies

gaﬁygaﬁ =0

7.2.73
(PT3g) =0, (7:2.73)

The first condition means that ¢’g,s is traceless so that the second condition is meaningful
since Pl acts only on traceless symmetric tensors. CKG is determined by the condition

§gas = 0. (7.2.74)

This corresponds to those transformations which does not change the metric after a gauge
has been chosen. From ([7.2.65)), this implies

—2(P100) .5 + (20w — V - 60)gap = 0. (7.2.75)
Taking trace, we get
—29°?(P160)ap + (20w — V - §0)g% = 0
V- oo (7.2.76)

:}5 =
YT

since (Pydo) is traceless. Thus dg,s = 0 gives
(P15a)a5 =0. (7.2.77)
Thus the tangent space to moduli space is KerPl and cKaG is Ker P;. Let

1 = dim Ker PlT

7.2.78
k = dim Ker P;. ( )

Then by Riemann-Roch theorem

where y is the Euler characteristic of the 2d surface. We will prove this using path integral
in the subsequent sections.

Theorem 7.2.9. Let x, i, k be as above. Then the following is true
(i) If x >0 then k = 3x,u =10
(11) If x <0 then p = —3x,k = 0.
Proof. Without the loss of generality, we can assume that the Ricci scalar R of the surface

is a constant. Indeed we can make a Weyl transformation to make R constant. Thus the
sign of R is the sign of x since

1 2

Now we claim that ] R
PP =—-V*——.
1ot A
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Indeed acting on a test function v, we see that

(PlTPﬂ))a = —V’g (Plv)aﬁ

1
=3 [VPV 405 4+ VIV 500 — VP (gasV,07)]
1 1
= —§v%a -3 (VPV 5 — VoV, 07)
1 1
= —§v%a - 59‘“ (Vo Vavs — VaV,05)
1 1
= —§V2va — §g57Rmv5

But in 2d, one can show that R, = %g%. Thus

1 R
(PlTPlv)a = —§V20a — Egﬁwngﬁ

Using this
/d2a\/§(P150)a6 (Pioo)™ = /d2a\/§5aa (P{ Piéo)”
1
= /dQU\/E (—§6aav25a“ — §50a50“>
2 1 as B R «
= [ d°o\/g §Va505V doP — Zéaaéo

where we used integration by parts. Now if y < 0 then the RHS is strictly positive and
hence Pdo # 0 for any do. Thus k = 0 and implies © = —3y. Doing similar
calculation, we can show that PId’g # 0 for y > 0 which gives u = 0 and we can show that
k= 3x for x > 0. O]

We see that this theorem is valid for the sphere for which xy = 2 since as we saw, the moduli
space of metrics on sphere is trivial and the ¢KG is SL(2, C) which has six real parameters
in accordance with the above theorem. The theorem is not valid for x = 0 but there is only
one oriented 2d surface without boundary — the torus and we saw that it has a nontrivial
moduli space as well as non trivial CKG.

2d Reimannian Manifolds and Riemann surfaces

Recall that the string S-matrix has integrals over the worldsheet with vertex operator inser-
tions. The path integral includes integral of space of all metrics modulo the diff x Weyl. As
discussed in previous section, the gauge fixing procedure picks out a metric from each gauge
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orbit leading to the moduli space of metrics. Since we have freedom to choose the metric from
each gauge orbit, we can choose it to be such that the integral over the worldsheet simplifies.
In this section, we will show that 2d Riemannian manifolds modulo Weyl equivalence can be
considered as a Riemann surface. This means that there exists a choice of metric, explicitly
the locally flat metric, on the worldsheet such that the worldsheet admits a complex atlas
and hence is a Riemann surface (see Definition below). This will simplify the integral
over worldsheet to integral over a Riemann surface. We start with a brief survey of Riemann
surface.

Definition 7.2.10. A function f : C* — C™ is called holomorphic if each component
fi : C* = C,1 <4 < m is holomorphic in the sense that it satisfies the Cauchy-Riemann
equations: write f; = f! +if? and z* € C" as 2 = x* + iy* then

off _off off _ 0f?.

R T T w=1...,n. (7.2.80)

Definition 7.2.11. A 2n dimensional manifold X is called a complex manifold of dimension
n if there is a covering of X by a family of open sets {U,} and homeomorphisms z,, : U, —
V,, where V, C C" is some open subset such that

fag = 2,0 Z;l 1z (Va N Vﬁ) — Z2a (Va N VB)

is btholomorphic ie fu5 as well as f,, 51 is holomorphic. Such a collection of charts is called a
complex atlas. We write dimg X = 2n and dimcX = n for the real and complex dimensions
of the manifold respectively. A complex manifold of dimension 1 is called a Riemann surface.

Thus C” is trivially a complex manifold of complex dimension dimcC" = n with a single
chart (C", 2*) in the complex atlas. In particular C is a Riemann surface. Once we include
the point at infinity, it turns into a sphere called the Riemann sphere.

Definition 7.2.12. A continuous map f : X — Y between Riemann surfaces is said to
be holomorphic if it is holomorphic in charts, that is, for every p € X, if (U,,2,) is a
chart containing p on X and (Vj3,ws) is a chart containing f(p) on Y then wgo foz ! is
holomorphic in the usual sense. Similarly, f : X — Y is meromorphic if it is meromorphic
in charts.

Let g be a Riemannian metric on X. Define 2n vector fields as follows: on a chart (U, z#)
from a complex atlas on X define

0 1{ 0 0 0 1 0 0
— - = ;= — == 4= 7.2.81
R {ax“ Zay”} SR ETR) {axu +Z8y/‘} (7.2.81)
where z# : U — C, p=1,...,n is written as z# = x* 4 i1y*. Note that these vector fields

form a basis for the complexifield tangent space 7,X € with p € U. Using this basis, the
Riemannian metric can be extended to TJDX(C as follows: write Z = X +iY,W =U +1iV €
T,X© with X,Y,U,V € T,X, then

G(Z,W) = g,(X,U) — g, (Y, V) +1i[g(X, V) + gp(Y,U)] . (7.2.82)
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In terms of components, if we use the basis

dz" = dx" + idy"

_ _ _ 7.2.83
dz" = dz" + idy" ( )
where 1 < p, i < m for E| T];‘X(C then one has
0
o ®) =90\ G20 5
g < o 0 )
,u,u a_ -
P (7.2.84)
g,uu =9p (8_ )
and
g = gudzl' @ d2" + g,pdz" ® dz¥ + gp,dZ" @ dz¥ + gppdzF @ dz”. (7.2.85)

We need one more ingredient before we prove the main theorem.

Definition 7.2.13. Let (U,, ¢o) be an atlas on a manifold X. A partition of unity subordi-
nate to (U,, ¢q) is a family of smooth functions p, : X — R such that

(1) pe is smooth and supp (ps) C U,.
(ii) for any x € X, there a neighbourhood U of z such that

#{a :supp (po) NU # ¢} < 0.

(iii) the functions p, sum to 1:

> pa=1 (7.2.86)

The standard result is:

Theorem 7.2.14. [I4, Appendix C] For any atlas on a manifold, there ezists a partition of
unity subordinate to it.

Let us now prove the main theorem.

Theorem 7.2.15. There is a one-to-one correspondence between Riemann surfaces and
Riemannian manifolds X with dimgX = 2 upto Weyl equivalence.

Remark 7.2.16. We did not include modulo diffeomorphism in the theorem because it is
implicit in the definition of a manifold.

*one can easily prove that T X© = (T, X©)*.
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Proof of Theorem [7.2.15 Let us first start with a 2d Riemannian manifold. Let (Uy, ¢a)
be an atlas on it with metric g,s on chart U, N Ug. Without loss of generality we can
assume that g,p o< d4p. If not, we can use diffeomorphism, which is equivalent to changing
chart, as described in Subsection to bring the metric to this form. Now using Weyl
transformation, we can take g,5 = 0o on U, N Usz. Let ¢, : U, — R? be given by
Yo = (Ta,Ya). Define z, = x4 + iys. Then gog = dap in coordinates z, is ds* = dz, ® dz,
on U,. We now want to show that the transition function in terms of z, is holomorphic. In
terms of ¢,, the transition function on U, N Up is

Vg © gogl ' R? — R2
In terms of z,, 23, the transition function is
Zg O zgl :C — C.

But on U, N Upg the metric has form dz,dz, and dzgdZzz. Then denoting the components of
the metric on U, as g3., 955, 95,, g== we see that

RICREDLIETE

0= g?z = — 92z
0z 0z (7.2.87)
0 (20023") 0 (20 23)
B 0z 0z
where z is the standard coordinate on C. This implies
0 (7a025") 0 (20075")
- = 2.
P 0 or 5 0 (7.2.88)

Thus zaozgl is either holomorphic or antiholomorphic. Similary zgoz; ! is either holomorphic
or antiholomorphic. The present case of oriented closed string theory restricts to holomorphic
transition functions since antiholomorphic transition functions destroy the orientability and
hence we obtain a Riemann surface.

Conversely start with a Riemann surface with complex atlas (U, 2,). Take the metric on
U, to be ds* = dz, ® dz,. We just have to patch these on the overlaps. We use partition of
unity for that. Define the metric on the surface as follows

9= pag"

«

where {p,} is a partition of unity subordinate to {U,} and ¢* = dz, ® dz,. Then clearly ¢
is a smooth 2-form field since the coefficients of dz, ® dz, are smooth. Moreover on U,

Gp=95> 0
B
=g% peU
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where we used the fact that g“ is fixed on U, and also the property of partitions of unity.
Thus we have defined a Riemannian metric on the surface in the complex coordinates which
can be converted to the usual coordinates using the inverse construction of (|7.2.84)) and
(7.2.85)). O

Remark 7.2.17. To interpret the CKG in this picture, note that we can define the worldsheet
as union of patches and use a G-transformation to bring the metric to dz,dZz, on patches
U,. The gauge choices on the overlaps can differ only by G-invariances of this metric which
are exactly the conformal transformations 7,e CKG. Thus a Riemann surface is the natural
background for a CFT.

Measure on moduli space of metrics

In this section, we want to derive a measure on the moduli space of metrics and prove various
properties of it. In this section, we denote the gauge group as G = Diff x Weyl. Recall the
string S-matrix of n external asymptotic states

Sivgn (k1,0 k) = Z / ngDg exp H/E d*oi/g(0:)V;, (04, ki),

compact
topologies

(7.2.89)
where X, is the worldsheet of genus g and the sum is over the genus in case of oriented
worldsheet without boundary. After gauge fixing, Dg changes to a measure D{ on the
gauge groups times a measure d“t on the moduli space which is p-dimensional. Moreover
the integral d*"o on the worldsheet for the n vertex operators can be used to fix the CKG.
Suppose CKG be k dimensional. Then we can write

[Dgld*"o — [DC]d"td*" "o

To implement this in the path integral, we need to introduce a Jacobian for this variable
change - the Fadeev-Popov determinant Agp(g,c). This Jacobian is defined as follows: to
fix gauge we choose a metric §(¢)¢ from each orbit of G depending on the moduli ¢. Moreover
k of the vertex operators are also fixed o — 6. Let («a,i) € f be the indices of fixed
coordinates. Then

t=wlgo) [t [pastg =gy T1 s (o —o7) 200

where G, denotes the space of all metrics on a genus g Riemann surface (worldsheet). Since
every metric on worlsheet is G-equivalent to §(#)¢ for some moduli ¢ and gauge parameter ¢,
the d-function picks out a unique value of { upto some discrete elements of CKG. As for the
discrete CKG, there are finitely many say ny discrete symmetries which do not change §(#)°.
Thus the second delta function is nonzero at ngr points. To fix them, we just divide by ng.
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Plugging this into the path integral we obtain

TS B /M Ptdee(3(t).5) [ Do) / T do®exp (—Su 63 (00)] — \)

compact
topologies

(i) f

XH\/ o)V, (o4, k

(7.2.91)

where M, denotes the moduli space G, /G of the worldsheet ¥,. Now we evaluate App(g(t), 7).

Let ¢,...,t" be components of coordinate ¢ on M,. Then a generic infinitesimal variation
of the metric g, is

I
0gas = 6t*Opfap — 2 (15160) (20— V - 60)Gus (7.2.92)
k=1

where hat on P; and V indicates that the metric in the definition of these operates is gag-
Thus if gap is close to gas(t) then we can write

/g D)6 (9 — 9()°) = / [D6wDE0)6 (8Gas) - (7.2.93)
Thus
App(9,6) " =ng / d"5t[DswA608 (3ga) [] 0 (60* (64)) (7.2.94)
(ai)ef

where the ng factor takes care of the discrete symmetries. Now as in our calculation of
Fadeev-Popov measure in Subsection [7.1.1| we again replace J functions by integrals:

6 (0gap) = / [DB] exp <2m / dQU\/mﬁaﬂégaﬁ)
~ [ (D8 explzni(s. b9) (7.2.95)

d(6of) = /d”xai exp (2mizy;00” (6;)) -

Plugging this in we get
Applg, 0] = nR/duét[DéwDéaDﬁ] exp <27Ti/d2m/g(a)ﬁ°‘5§gag> X
H /d:z:m exp (2miz ;00 (6;))

(a,i)ef

(7.2.96)

The path integral over dw can be easily performed now. In the integrand it only appears as
/[Déw} exp (27Tz' d*o+/§(0) 3P (26w) gag) =6 (26" Gag) - (7.2.97)
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Thus the path integral over dw forces 37 to be traceless:
B Gap = 0. (7.2.98)

So we remove the Déw from App[g, 6] and take 3 — [ where (3’ is traceless. This also forces
the term in dg,g

BV - 60)das = 0. (7.2.99)

Thus we get

ARG, 6] = ng / d"otd*z [DB' D] exp | 2mi <5’,215150 — Gthap g> +2mi > waido® (63)
(evi)ef
(7.2.100)

where k is summed over. To invert Ap5[g,6] to get App[g, 5], we just replace bosonic
variables by Grassmann variables as before:

0o —
B;B — baﬁ
Toi — Nai
5th — ¢k

(7.2.101)

We can normalise the Grassmann variables such that the Fadeev-Popov measure takes the
form

1 1 A
Aebla.o) = - [DUDdPeanexy |~ (b2Pie-€0ug) + Y o (0

(ai)ef
(7.2.102)
Integrating over £ and 7, we get
A 1 1 . .
Arp|g,0] = / [DbDe] exp (—San) [ | 4— b, 0k) ] < (64) (7.2.103)
e e (ai)ef
where
1 .
Son = 5 <b, Plc> (7.2.104)
and we used the integral
[ D] exp (-6 0.000)) = 1 0.009). (7.2105)
41 ’ 4 V7
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Thus the gauge fixed amplitude takes the form

Siy o gn (K1, .ok Z / /Dqﬂ)b Dcexp (—Sm — Sgn — Ax) X

compact

topologles

11 / do® H v,0e9) T] ) [[Valoi | Vi, (ki o3) .
(ayi)¢f Xg = (ayi)ef i=1

Simplifying the Fadeev-Popov determinant

We want to simplify the path integral expression for Agp in (7.2.103). Here, we will ex-
press App in terms of functional determinant. Recall that the operator P; maps vectors to
symmetric, traceless rank 2 tensors and P! is a map in opposite direction. In particular
PIT P, and P1P1T are symmetric operators on the space of vectors on symmetric, traceless
rank 2 tensors. By spectral theorem, they can be diagonalised and there exists complete
orthonormal sets {C¢} and {Bgas} for the two spaces with respect to the inner product

defined in (|7.2.67]). More explicitly,
PIPCY =170, P,Pl'Bras = Vi-Bkag (7.2.107)

for real numbers v}, vk and
(C3.Cr) = [ E0\GCTCra = b1,

(7.2.108)
<BK,BK/> = /d20'\/§B?(BBK/a/3 = 5](}(/.

We claim that there is a one-to-one correspondence between the eigenfunction of PPl and
Pl' Py with nonzero eigenvalue. Indeed if P} P,C; = v/?C; then

P1 (PlCJ) = l/J PlC’J (72109)

so Cj — P,C; and similarly Bx — P{ Bx. We will thus identify these functions as

1
Bicas = - (PiCK)pps Vi =Vg #0 (7.2.110)

Let Box and Cp; be the eigenvalue 0 eigenvectors of PP and PI'P;. Note that the Co;
are elements of CKG since it corresponds to solutions of P,C = 0 and By are elements of
moduli space of metrics since it corresponds to P B = 0, see discussion around .
Thus there are p and x number of Cy; and By, respectively. We now expand the ghost fields
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as

Z c;CY (o Z CoiCli(0) + Y esC5 (o)

J#£0

Z bKBKaﬁ Z bOkBOkaB + Z bKBKOtﬁ( )

K#0

(7.2.111)

Here c¢; and bg are Grassmann odd variables. Plugging this in the ghost action, we get

Sgh = <b, P10>
<Z bOkBOk + Z bKBK Z chplcOJ + Z cyPCy )>
K+#0 J#0
= 5= ZbKCJ Bk, P1CJ>
7.2.112)
b (
KT (PCr, PCy)
27T Vi
JK
1 b
— "2, PIPCY)
2T H VK

where we used the fact that PiCp; = 0 = PJ By, in the third step. The ghost path integral
for App becomes

App = / HdbokHdCOJ [ dbsde, exp< VJchJ) f_[% (b.0wg) [ e (03).

j=1 J#£0 (ap)ef
(7.2.113)
This path integral vanishes unless there are p number of by, and x number of cy; in the
integrand. These ghost zeromodes can come only from vertex operator insertions ¢* (o;) and
(b, 0w g). Note that («, i) € f runs over the conformal killing vectors which are s in number.
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Thus we see that we can write

H ¢ (03) = H [’Z COj’C(?j’ (o) + Z c;C9 (04)

(ai)ef (ai)ef J#£0
- 11 [
one (7.2.114)
= H Coj H [Z sign(P)Cg‘P(l) (04) Cop(2) (i) ... Cop(w) (Ui)]
J'=1 (ap)ef LPESK

K
= H cojr Det [C{fj (ai)}
j=1
Other terms in the product give vanishing path integral due to lack of enough (exactly x )
number of ghost zero modes ¢y;. Here S, is the permutation group on  letters. Note that
Det [C§; (0;)] makes sense since (i) € f runs over  values, so does j and hence C§; (o;)
is a square matrix. For the same reason

ko ) p Do
H i (b, 0pg) = H Z . (Bok, O g) | -

k'=0 k'=1 Lk"=1

) (7.2.115)
B " 7
_ H borDet {( ok Ok gq
47
k=1
The path integral over ¢y, b; is easily done using
/d91d92 exp (ab10s) = a. (7.2.116)
Thus the path integral becomes
vy a {bok, Ok )
(bor. Derd) P (7.2.117)
a 0k> Ok g 141
= Det [C’Oj (04)] Det [T] Det/ yo

where we used the fact that v are non-zero eigenvalues of P{ P;. Also Det’ indicates that
zero eigenvalues are ignored.

7.3 Tree Level Amplitudes
7.4 BRST Quantisation and No-Ghost Theorem

In this section, we finally complete the picture sketched in Section |3.3.7, We start by
discussing BRST quantisation of the string and then prove the no-ghost theorem.
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7.4.1 Generalities on BRST quantisation

Let us take a QFT with fields {¢;} and action S[¢;]. Also suppose the theory has gauge
symmetry under which the fields transform as

5¢z = 60‘50[@-, (741)

where 9§, are the generators of gauge transformations and ¢, are the real parameters of the
infinitesimal transformation. Suppose fgﬁ be the structure constants of the gauge algebra:

(60 5] = £750,, (7.4.2)

Consider now the path integral

7= / (D6 exp (— 5 [6]) (7.4.3)

of the theory. As already discussed, the path integral over-counts the physical degrees of
freedom since gauge equivalent fields are physically equivalent. Thus we need to fix the
gauge such that we choose only one representative from each gauge orbit. This is equivalent
to dividing by the volume of the gauge group Vgauge. S0 the physical path integral is

7 - / Do o (—S10]). (7.4.4)

‘/gauge
In general gauge fixing can be represented by a function
F4(¢;) = 0. (7.4.5)

Then we perform the Faddeev-Popov gauge fixing by introducing ghosts and a gauge fixing
term in the action:

/ 004 exp (=S [¢]) — /[Débz‘DBAdbAdCa] exp (=5 [¢:] — St B] = Sgnost [, €])

‘/gauge
(7.4.6)
where
Set[B] := —iBAF*(9) (7.4.7)
is the gauge fixing term and
Sehost 1= baC*00 F4(9). (7.4.8)

is the Faddeev-Popov ghost action. The path integral on B, produces a delta function
) (F A) which fixes the gauge. The gauge fixed action S[¢;| + Sgr + Sgnost is invariant under
the BRST (Becchi-Rouet-Stora-Tyutin) transformation generated by an operator dp :

Oppi = —iec™da0;

opBa =0,

(SBbA = EBA (749>

i
dgc® = §E gvcﬁcV
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where € is an anti-commuting parameter for the infinitesimal transformation. Let us check
that the action is indeed invariant under BRST transformation. The fact that € is grassmann
odd follows from the fact that BRST transformation maps bosonic and fermionic fields into
each other. We have

5pS[di] =0 (7.4.10)

since dg@; is just a gauge transformation with gauge parameter zec®. Next
0pSes = —i (05 Ba) F*(¢) — iBadpF"(9)
= —iBa (—i € "0, F*(¢)) (7.4.11)
= —€eBac" 6, F ().

Note that since F4 only depends on ¢;
opF = —iec®5, F(9). (7.4.12)
Finally
68 Sghost = (6b4) *SaF () + ba(05c™)0aFH(P) + bac*5a(65F*(9))
= eBAc®0, FA(p) + %bAe [, 0o FH(¢) — iebac* 6,05 F4(9)
— eBacS, FA() + %bAcﬁcv 05,0, FA@) — iebac®?5,8,F A (9)  (T413)
= €BAC" 5o FH(P) + iebac’ 850, FA(p) — iebac®c’ 6,05 F* (o)
— B¢, (9),

where we used the fact that ¢c? = —cPc®. Combining ((7.4.10), (7.4.12)) and (7.4.13)), we see
that

05(S[¢] + Set + Sghost) = 0. (7.4.14)

Using the Noether procedure, one can compute the conserved current and charge. Let the
conserved charge be Q. There is a global U(1) symmetry of the gauge-fixed action:

bA — G_ieba
0 (7.4.15)
Co, — €"b,

and all other fields neutral. The corresponding conserved charge is called the ghost number.
So by, ¢, has ghost number —1 and 1 respectively and 0 for other fields. To match the ghost
number on both sides of ((7.4.9)), we assign ghost number —1 to the BRST parameter e.

This is the classical description of BRST symmetry. Now, in the quantum theory, Qp be-
comes an operator and acts on the asymptotic initial and final states |i), |f) respectively.

After quantisation
53@ = ’iE[QB, (I)]:t (7416)
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where + indicates that the right hand side is a commutator or anitcommutator depending
on whether ® is bosonic or fermionic operator. This also implies that ()5 has ghost number 1.

The gauge fixing condition F“(¢) = 0 is unphysical. We can do the same procedure by
changing the gauge fixing condition to F'4 + §F4. Then the inner product of asymptotic
states changes by

e6(f | i) =i(f|op (ba6F?)|i)
= —e(f[{@B,badF }]1).

Here we used the path-integral representation of asymptotic state (give details). This un-
physicality of gauge fixing condition implies that

(7.4.17)

ed{f i) =0 (7.4.18)
which implies that
(V|{Qp, ba0F4}|¢') =0 (7.4.19)
for physical states |¢) and |¢'). This condition for arbitrary 6 F'# implies

QplY) =QrY') =0 (7.4.20)

Here we have assumed that QT = (Qp. This gives us the aphorism: physical states must be
BRST-invartant.

Proposition 7.4.1. The BRST charge is nilpotent

Q% =0. (7.4.21)

Proof. We must be able to freely change the gauge choices without changing anything physi-
cal. This means that )z must be conserved and hence must commute with the Hamiltonian
(7l This implies

[Q5,{QB,b46F*}] =0 (7.4.22)
which implies

QLba0F* + QpbadFAQp — Qpbad F*Qp — bAdFAQ% =0

= [Q%,ba0F*] = 0. (7.4.23)

This requirement for arbitrary § 4 implies that Q% = constant. But note that Q% has ghost
number 2 while any nonzero constant has ghost number zero. O]

Recall that the Hamiltonian generates time translation and hence any conserved quantity must commute
with the Hamiltonian
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Alternatively, one can check the action of dg twice on all fields. For example

(53 ((S/BC ) 53 (—6 g'y 6 )
_ _i [f fﬁ et + f f7 BCUCT}
T4 Uk B (7.4.24)

/
= _% [fﬁwfﬁ e fv BCUCT]
= 07

where we used antisymmetry of structure constants and renamed the dummy indices in the
second term to cancel it with first. Similarly one can check that dgd; = 0 on all other fields.

Remark 7.4.2. In the gauge algebra, we assumed that the structure constants do not depend
on the fields and that the RHS of does not contain terms proportional to the equations of
motion and hence would vanish onshell. These assumptions break down in general and in
such a case one needs the more general Batalin-Vilkoviski (BV) formalism. This formalism
is particularly useful for string field theory which we will discuss later.

Since Q% = 0, one can look at the @ g-cohomology called the BRST cohomology as we
explain below. Let 7 be the string Hilbert space. Define the subspace . oea C F as
follows:

Haosed = {|V0) € I Qpl) = 0} (7.4.25)
and the subspace et C F as
Hoxaer = {|W) € A ) = Qp|Y') for some [¢') € H#}. (7.4.26)

These subspaces are called () g-closed and () g-exact subspaces respectively. Clearly .t C
Hiosed because Q% = 0. Then we define the BRST cohomology as the quotient space

jiﬂclosed
I = : 7.4.27
PRST %Xact ( )
Theorem 7.4.3. The physical string Hilbert space
Hony = FBRST- (7.4.28)

Proof. As already discussed above, physical states |¢) € 4, must satisfy Qg|¢)) = 0. This
means that ) € Hpseq. Next consider a state of the form @Qp|x). We claim that this is a
null state. Clearly Qg|x) € #ny since Q% = 0 and for any [¢) €

W 1Qslx) = ((WIQL) ) =0, (7.4.20)
These states are modded out in J&,. Thus
~ jiﬂclosed
Hony = e = JBRST- (7.4.30)
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Recall from Eq. 6.1.15 that
(1) = [ 1D0)] exp (=5 = Syy = S (7.4.31)

where [D@']{ is short to denote that the fields have to satisfy boundary conditions corre-
sponding to states |i) and |f). O

There is a key issue that we need to address. In many cases, as in strings, gauge fixing
does not completely fix the gauge. There is residual symmetry after a gauge has been fixed.
For example, in strings case, fixing the worldsheet metric to a fiducial metric leaves us
with residual conformal symmetry. In such cases we are required to impose the constraints
arising from the residual symmetry. More precisely, let G be the generators of the residual
symmetry. These are called constraints. These satisfy an algebra

(Gr, Gy = iffGk. (7.4.32)

One has to impose the constraint on the BRST Hilbert space that the matrix elements of
these generator vanish:

(W|GilY) =0, ), [Y') € Hbrsr - (7.4.33)
For each generator G, there are a pair of ghosts ¢! and b; satisfying
{CI, bJ} = 5{], {CI, CJ} = {b[, bJ} =0. (7434)

The BRST charge has the general form
7
Qp =GP — Eff,cchbK

. (7.4.35)
= (G}“ + §G§>

where G7' is the matter part of G; and
G8 = —iffSelby (7.4.36)

is the ghost part and they satisfy the same algebra as (7.4.32)). Using the GGG Jacobi
identity, we have

1 1
Qp = 5{@37 Qp} = —Eff]f%LCICJCKbM = 0. (7.4.37)

More generally, one might also have central terms in the constraint algebra, for example in
the Virasoro algebra. In that case, we will need to check that Qg squares to zero with the
contribution of the central terms.
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7.4.2 BRST quantisation of point particle
Recall that the point particle action is given by

1 1
S = / dt <§e_2x'“x'y + §em2> (7.4.38)

where e is an auxuliary field (einbein). The gauge symmetry of the theory is reparametriza-
tion invariance 7 — 7(7) under which X* is invariant X*(7) = X*(7) while the einbein acts
as a metric on the worldline so that

e(r)dT = e(r)dr (7.4.39)

So the index «v in ([7.4.1]) is the coordinate 7. Let us now find the infinitesimal transformations
of the field. Taking 7(7) = 7 + (7) for some infinitesimal parameter ¢, we see that

SXM(7) = XM(7) — X"(7)
= XH*(1) — X* (1 + (1)) (7.4.40)
= —e(1)0, X" (1) + O (52) )

Note that in the calculation of 6 X*, it is important that we evaluate both X and X at 7 or
7. To compare with (7.4.9)), we perform some manipulations. We write

IXH(T) = — /dﬁé (1 —m)e(m) 0. X" (1)

— / dre™ (=6 (1 — 1) 9, X"(r)) (7.4.41)
= "6, XH(T)

where we defined €™ = ¢ (77) and the contraction of 7; is the integral over 7. Thus

0 XH(T) = =6 (1 — 1) O, XH(7). (7.4.42)
For the einbein we have o
() = &(7) - = &(F) [1 + Oe(7)] (7.4.43)
Thus
de(t) =é(7) — e(7)
=é(T) —e(rt+e(7)
=e(7) — e
(7)

(7.4.44)
S / dre™ 0, [0 (T — 1) e(7)]
= 57—15716(7—)
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so that
dne(r)=—0-[6 (1 —1)e(7)]. (7.4.45)

This shows that a basis of gauge algebra is d,, defined by
on7(1) =0(T— 7). (7.4.46)
We now calculate the structure constants of the gauge algebra. We have
(071, 07 ] XPH(7) = =067, (0 (7 = 72) 0-XH(7)) + 07, (0 (T — 71) O, X" (7))
_ /dma (r— 73 18 (7s — 72) Dy (75— 72) — 8 (73 — 72) Dy (7 — 7)) D, XM ()

= /dTg 12, 0m XH(T)

(7.4.47)
where we can easily recognize
T, =0(13 = 11)0r,0 (13 = T2) — 0 (73 — T2) O, (T3 — 71) . (7.4.48)
Recall that we choose the gauge e(7) = 1. Thus the gauge fixing function is
F(r)=1—e(7). (7.4.49)
The gauge fixed action is then
Se = /dT (%X/;X“ - %em2 +iBle—1) — ebc) (7.4.50)

where equation of motion of the auxiliary field B fixes the gauge and b, ¢ are reparametriza-
tion ghosts coming from Fadeev -Popov gauge fixing. From the general BRST transformation
(7.4.9), we find the BRST transformation for the free particle to be

opXH = —ie/dﬁc(ﬁ) (=0 (1 — 1) 0-X*(1))

= jec Xt

Spe(r) = —ie / dre () (=0, (r — ) e(7)
— ied / dme(m)e(r)d (r—m) (7.4.51)
— ied, (ce).

e (n) = 2e / dradrsfTh ¢ (73) ¢ (73)
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Thus BRST transformations are

opXH = iec X"

dpe = ied;(ce)

opB =0 (7.4.52)
ogb = ¢€B

dpC = iecc.

In the path integral, we can perform the path integral over B whose sole effect is to set e = 1
in the action. This is called integrating out B. The resultant action is

1. . 1 :
S = / dr (EX“XM + 5m? — bc) : (7.4.53)

The BRST transformations for the remaining fields will change. To get the new BRST trans-
formation for the remaining fields X*, b, ¢, we need to express B in terms of X* b, c. This is
readily obtained from equation of motion for e and then setting e = 1. Equation of motion
for e is:

1XrX, 1 :
5" £+ 5em? +iB —bc=0 (7.4.54)
which after setting e = 1 gives
B= _%XMX“ + %m2 — dbe. (7.4.55)
The BRST transformation then is
op XM = iec X"
1. . 1 :
dpb = ie <—§X"Xu + §m2 — bc) (7.4.56)
dpC = iecc.

This BRST transformation is nilpotent only onshell. Indeed

5 0p X" = icdly (CXM)
= i€ <ie’cc’X“ + c0; <ie'cX“>>
(7.4.57)
= —¢ccc (C'X“ — XM — CX“)
=0

where the — sign in second term comes by commuting €' past ¢ and the last term vanishes
since ¢ = 0 or X* = 0 is the equation of motion of X*. For ¢, we have fill in details.
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BRST Hilbert space of the point particle

To construct the BRST Hilbert space, we first construct the canonically quantized Hilbert
space and then construct the BRST-cohomology over it.

The Hilbert space is the tensor of the ghost Hilbert space and X Hilbert space. Recall that
the ghost Hilbert space is a two state system: there are two states in the system | 1),| |)
with the action of operators given by

ol t)=14), b[4)=0
=0 d)=|1. (7.4.58)

Note that this is a quantum mechanical system, that is 0 + 1d field theory. Thus we don’t
have oscillators. The the total Hilbert state is just the two ground states. The X Hilbert
space is a momentum eigenstate |k) with p#|k) = k*|k). The total Hilbert space is thus

A ={|k, 1), |k, 1) : k e RV} (7.4.59)
where we have defined |k, ) = |k) ® | ) and so on. The action of operators is
Pk, L) = KR LD, MR ) = BHE, 1),
bk, 1) =0, blk,1) = |k, L), (7.4.60)
k1) = [k, 1), el ) =0,

Moreover 1
kL) =cH|k,]) == (K* +m?) |k
QB’ka T) =0.
Thus
Haosed = {|k, 1) 1 K> +m® =0} U{|k, 1) : k e RV} (7.4.62)
and
Hoaer = { |k, 1) 1 kK> +m? #0}. (7.4.63)
Thus the BRST Hilbert space is
%ose ~
<}féRST - %l < = {|k7$>7|k71\> : k2+m2:0} (7464)
exact

We see that the physical states must satisfy mass-shell condition as expected. But note that
we have two copies of expected states. To remedy this situation, we claim that states not
satisfying

bly =0 (7.4.65)
have vanishing amplitudes with any other state. This will restrict the physical Hilbert space
to {|k, 1) : k? +m? = 0}. To justify the claim, note that for k*+m? # 0, the states |k 1) are
exact and hence they are orthogonal to all physical states (which are @ p-closed) and their
amplitudes vanish identically. So the amplitudes of the states |k, 7T) must be proportional to
§ (k* +m?). But in field theory and string theory, amplitudes have poles and cuts but never
delta function (except in D + 1 = 2 case). So the amplitudes for states |k,T) must vanish
identically.
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7.4.3 BRST quantisation of the string

In string theory, the fields are X*#. We want to derive the BRST transformation of the fields.

Theorem 7.4.4. The BRST transformation of the fields are

SpXH =ie(cO + cd) X"

dpb =ie (T +1T7)

dpb = ie(Tx + Tg) (7.4.66)
dpc = iecOc

dpC = iecoc.
Proof. The total action for the string is
S =5p+ Sghost + ng (7467)

where Sp is the Polyakov action, Sghost is the ghost action and

)
Su= 1= [ EoVIE (5as = g0s). (7.4.68)

The gauge symmetry is now G := Diff x Weyl with ¢, b being the Diff, Weyl ghost respectively.
We now want to find the gauge algebra. Under diffeomorphism 0* — (o) we have

X"(&) = X*(o)
o Ho” 80'6 (7.4.69)
Jop(0) = %@976(0)
Taking 0%(o) = 0 + ¢%(o) with € an infinitesimal parameter, we find that
X (o) = X*(&) — XH(&)
= X(o) - XH(o +e)
= —%0, X" (o) (7.4.70)

_ / 2016 (o — o1) £ (1) Do X*()

Following the point particle example, this readily gives us the first BRST transformation

Ip X = iec®0, X" (7.4.71)
or in complex coordinates B
dpXH = ie(cO + c0) X*. (7.4.72)
We also have 5
B.s =0
el (7.4.73)
5Bbaﬁ = GBaﬂ.
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To get dgc®, we need the structure constant of the gauge algebra. From the above expression

(7.4.70) we see that
OXH =™ 00 X¥ (7.4.74)

where €71 = ¢ (1) and
S X' = =0 (0 — 1) 0,X" (o). (7.4.75)
We want to compute the structure constantsﬂ

Baors 05,05 XH(0) = —0u0y (62 (0 — 02) 05X"(0)) + 0p.0, (0P (0 — 01) DuXH(0))
= 0% (00— 01) 0,6® (0 — 02) s X"(0)—
(7.4.76)
O

fill in detalils

Remark 7.4.5. The BRST current that we have obtained from the Noether procedure is not
a conformal primary. To make it a conformal primary, we add a total derivative term to the
current which does not affect the BRST charge but makes the current a primary field. From
now on we will use 1 3
jg = cT* + = 1 bcOc : +=0%
I (7.4.77)
jg =¢cT™ + 3 béé - —1—5826.

We then have the following OPEs:
Proposition 7.4.6. We have the following OPFEs

TENinfi) ~ 5 gy + 2 +
o) ~ 1 e
h

Jj(2) O™ (w,w) ~ O™ (w,w) +

[hOc(w) O™ (w, w) 4 c(w)0O0™ (w, w)]

(7.4.78)
and similarly for jp(Zz). Here jg is the ghost current (see eqref) and O™ (z, 2) is a conformal
operator of dimension (h,b). The OPE of jg(z) with b,c and of jg(z) with b,¢ is reqular
respectively.

G wp ™) G—w

Remark 7.4.7. As we will show soon, the BRST charge Qg is nilpotent if and only if
™ = 26. This will let us conclude that jp is a conformal primary of dimension (1,0).

6In this example, these are not constants
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Proof. O]

fill in details

Now as pointed out in the general discussion around , gauge fixing of string leaves
local conformal symmetry as residual gauge symmetry with generators L,, and L,,. We have
to impose

(| L| 0"y = (¢ |Lm| ) = 0 (7.4.79)
on the BRST Hilbert space of the string as a constraint.

BRST Hilbert space of the string

Let us start by specifying the space of all states. It is generated by Fock space constructed
out of matter and ghost oscillators. The matter ground state is |0; p) while the ghost ground
states are | 1),| J). Again we will argue that physical states must satisfy

bol1h) = 0. (7.4.80)

Thus we only include | |) as ghost ground state in view of . The BRST ground state
is thus |0; p, ) and states in the total Hilbert space is constructed using oscillators o, a/;
b, b Cn, €n for n < 0. Note that these oscillators for n > 0 annihilate the ground state.
The inner product is defined by defining Hermitian conjugate of the oscillators

(Oz“)T — ot (au)T — g

—n)

bl =b_,, bl =0b_,, (7.4.81)

The inner product on the full Hilbert space is then defined using above Hermitian conjugates
once we define the inner product of ground states. Note that

()= =0 (7.4.82)

since we can always insert 1 = bycg + coby and ¢g annihilates | 1) while bg| |) = 0. But there
is no restriction on (1|)). So we define

(=) =1 (7.4.83)

and put the inner product of ground states to be

open string:  (0;p, 1 0;p" 1) = (0;p, ) |eo| 0;9' 1) = (2m)P67 (p — p')

7.4.84
closed string: (05 p, 4] 0;p' 1)) = (0;p, | [Goco| 00" 1) = i(2m)P67 (p — 1) . ( )

On this space of states we impose
bolth) =0 (7.4.85)
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as we will argue later, is required for physical states. We now construct the BRST cohomology
on these states.

Open String:
Since physical states must be )g-closed, we see that

Loly) = {Qp,bo} [¢) = 0. (7.4.86)

Using the expression for Lj, we see that

(L5 + Lg) [¥) = 0

— (%Z:an~an:—2n:bncn:—1> ) =0

neZ nel

oo 25 0
— (o/p2 +Y > ko = Y (nb_pen — nc_nbn) + coby — 1) [¥) =0.

n=1 pu=0 n=1

(7.4.87)

Now using eqref, we obtain

0o 25
1

where we have defined the number operators

Ny =not aun, Ny = —b_ncn,  Nep = c_pby (7.4.89)

which counts the number of o, b,, ¢, oscillators in [¢)) respectively. This can easily be
checked using the commutators

[O[Z7 Oé;;’L] = mnuuém+n,07 {bn7 Cm} = 5m+n,0- (7490)

Let 7 be the space of states satisfying egret and eqref. We claim that ()5 is a map from H
to . Indeed for QplY), we see that

bo@5|Y) = (Lo — Qpbo) [¥)
= Lo[¢)) — Qpbo|v) (7.4.91)
=0.

Also
LoQplvY) = QpLolt)) =0 (7.4.92)

since [@p, Lo] = 0. To construct the BRST Hilbert space, we need to look at . The inner
product egref on S is inconsistent. To see this, take the state |0;p, 1) = ¢|0;p,]). Then
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using the inner product, we have

€0;p, 1 0", 1) <0 p, coco‘o v, ¢>
<O P, |eoco| 059, 1) (7.4.93)

while the §%° (p — p’) has a factor 6(0) since p, p’ are on the mass-shell. So we define a new
inner product (-||-) on ¢ in which we ignore the ghost X° and the ghost zero modes. This
inner product will be relevant for probabilistic interpretation./\Let us now work out the
first few levels of the BRST Hilbert space. Since states in .77 are on mass-shell we will
simply denote the ground state by |0;p,]). At the lowest level, we have the ground state
0;p, 1) with m? = —p? = —1/a’. This is tachyon of the lightcone quantisation. This state is
definitely () g-closed as can be checked using eqref. There are no () g exact states at this level.

At level 1, N = 1, a generic state is of the form

1) = (e a1+ Bby+vc 1) |0;p, L) (7.4.94)

where e = ¢, = (e1,...,e5) Is a vector and 3,7 € R. From egret, we get m?> = —p? = 0.
The norm of this state is

(Wil = (Osp, L || (e - o + B0y +77cr) (e - ey + By +ve_1) | 059", 1)

7.4.95
=(e"-e+ By +78)(0;p, L 0;p',]). ( )

We see that the states a®, [0;p,]), (b_1 —c_1)|0; p;]) are negative norm while o’ ||0; p, |)
and (b_1 + ¢_1)|0; p,}) are positive norm states. We now have to choose @)p-closed states
out of these. We have

Qp 1) = V2a/ (coip-a_y +ep - ay) i)

(7.4.96)

= V2 (p-ecoi+fp-a1)|0;p; )

see [12, Page 233] for detailed calculation. Then Qg |t¢1) = 0 implies
p-e=p=0. (7.4.97)

This leaves us with 26 linearly independent states, 24 out of which have positive norm and
two have norm zero. The zero norm states are ¢_1|0;p, ) and p-a_1]0;p,}). To determine
the BRST cohomology, we need to find the @p-exact states. For a state |x) of the form
(7.4.94) with €', 5,4/, we have

Qslx) = V2 (p-€c_i+p-a_1)|0:p,l). (7.4.98)

Now since [@p, Lo] = 0, @p does not change the level and hence a general () p-exact state at
this level is of the form (7.4.94). So ¢_1|0;p,]) is @ p-exact and hence a generic class in the
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BRST cohomology has a representative of the form e-a_1|0;p, |) for € = €], = (e, . . ., €55)
satisfying p - e = 0. The cohomology class is

[e-a]0;p, )] = {((e + 'p) - a1 +7vc1) [0;p,)) - By € R} (7.4.99)

Thus the cohomology at this level is 24 dimensional and the norm is positive-definite. One
can proceed to higher levels and show that the BRST cohomology is positive-definite.

Closed String

As for open strings, we will argue later using string amplitudes that physical states must
satisfy

bolt) = bol1) = 0, (7.4.100)
which along with the physicality condition @g|1) = 0 implies

Lo[¢) =0, Lo[¢) =0 (7.4.101)

As before . ,
Ly=7 (0 +m?), Lo=7 (P*+m?) (7.4.102)

where

0 25

o

7= dn (an + New + ZNW> —1,
n=1 ©=0

o 00 ~ B 25 .

Zm2 _ Zn (N,m + N, + ZNW> —1.
n=1 u=0

Repeating the same calculations as before, we obtain m? = m? = —4/a’ at level 0 which is
the tachyon. At level 1 we obtain 24 x 24 massless states which are the graviton, the dilation
and the B-field as we obtained in lightcone quantisation.

(7.4.103)

7.4.4 Proof of the no-ghost theorem

We saw that in Lightcone quantisation, we had no ghosts but then we lost manifest Lorentz
invariance. While in covariant quantisation, we had manifest Lorentz invariance but we had
ghosts and we pointed out the a necessary condition for ghosts to decouple from the physical
spectrum was the critical dimension D = 26 and the normal ordering constant a = 1. In this
section we prove that this is also a sufficient condition by showing an isomorphism between
the Hilbert space in lightcone quantisation and covariant quantisation.

The Setup

We will prove the no-ghost theorem in the general setting of Subsection. That is, we will
take the worldsheet CFT to be d scalar fields X* including p = 0 and a decoupled unitary
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CFT K with central charge 26 — d plus ghosts. The cFT K will be taken to be compact
meaning that the conformal primaries are discrete. The Virasoro generators of the theory is

Ly =LY+ LE+ I8, (7.4.104)

The Hilbert space of the theory is the linear span of states of the form |N, I;p);|N, N, I; p)
for the open and closed string respectively. Here N (and N) denotes the combined level of
the d-dimensional and ghost CFT and [ is a discrete label for the spectrum of the cFT K and
p is the d-momentum. Let us denote the total Hilbert space by 7. The additional physical
amplitude condition

boltp) =0 (7.4.105)

imposes the mass-shell condition on the states:

d—1
P = Zp“pu — —m? (7.4.106)
n=0
where
o d—1
am?=> "n (an + New + ) N,m> + L5 -1 (7.4.107)
n=1 pn=0

2

for the open string. For the closed string we have two expression for m* coming from the

left and right moving sectors:

/ o d—1
%mZ =>n <an+Nm+ZNm> + L -1
n=1 n=0

- (7.4.108)

o > _ _ — ~ _

ZTh? =>n (N,m + N, + ZNM> +LE - 1.
n=1 pn=0

This is the level-matching condition in BRST quantisation. Here L¥ and LE should be
understood as the eigenvalue of the operators L& and LE respectively on the states. We can
again construct the subspace ¢ as before, is the subspace of those states which satisfy

bolp) =0, Lolyp) =0 (7.4.109)
for open string and
bolt)) =0, bo|tp) =0 Lolp) =0, Lolyp) =0 (7.4.110)

for closed string. We suppose the label I is an orthonormal index to define the reduced inner
product on 7

(0,1;p||0, J;p')y = (0,0,1;p]0,0, J;p') = 2p°(27)* 164" (p — p') 015 (7.4.111)
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This inner produc/t\ is covariant because of the 2p° factor as in field theory. Let #+ be
the subspace of ## which do not have X° X' b or ¢ excitations. Then J#* has positive
definite inner product since these oscillators are the source of negative norm. When we take
d = D = 26, then it is clear that

1
= %igh‘ccone

since we projected out exactly the longitudinal excitations X%, XP~! to define A ightcone-
We will prove that
Hpst = A

Finally we will complete the proof of the no-ghost theorem by proving that

%RST = %ightcone = %Q (74112)

Proof of J#rst = S+

The proof proceeds as follows: we first prove that H* is isomorphic to the cohomology of
another nilpotent operator (); and then prove that the cohomology of () is same as the
cobomology #grst of Q. We first prove this for the open string. We begin by defining Q).
Define the light cone oscillators

1
- 0 1
o, = — (o, T« 7.4.113
It is easy to check that
(o), 0] = —mbpm—p, [0, o] = [ap,, 0] =0. (7.4.114)
The number operator
1
Nt = — ol o 4.
E O, (7.4.115)
meEZ
m7#0

counts the number of o~ -excitations minus the a™-excitation. This is because for n # 0

[N* o] = Z % caf, lan, o] + [af L al ] an
= ns + (7.4.116)
m

and similarly
(7.4.117)
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We want to decompose ()p as

Q=01+ Qo+ (7.4.118)
such that
[N*,Q;] =jQ;, j=0,%£1 (7.4.119)
To do this, let us write Q) explicitly. From ([7.2.89)) we can write the open string Q5 as
1
W = % en (L2, + L5,) + 3 222(m — 1) & CmCrbomn : —Co. (7.4.120)

Let us choose a Lorentz frame in which p* # 0. Using ((7.2.89)) we can write

2 meZ
d—1 (7.4.121)
= DG el )+ 3D
mez mEL i=2
Thus
1 1 d—1
B = Z -5 Z cn(cal, o i+ al, o) + 5 Z ch ot ol e, LY,
nez meZ mez 1=2
1
+ 3 Z (m—n): epCpb_m_n : —co.
m,ne’
(7.4.122)

From this we see that terms with no a* will commute with N'. Terms of the form afaF
for m,n # 0 also commute with N' since this has one oscillator of o~ and a*t each and
N'¢ gives the difference of a~and a* oscillators. Terms of the form aag for m # 0 can be

simplified to
/
afaf = \/%ija:‘; (7.4.123)

and hence does not commute with N'. Finally
/
o
afal = —pFpF

2
and hence commutes with N'°. From (7.2.89)), we see that to find Q;, we need to extract
terms containing o, o . From first term in Qp, the term n = —m in the sum over n and
from second term in ()pg, the term m = 0 in the sum over m contribute to ¢);. Thus we see
that ) .
Q= —3 Z ComQ, Qi — 3 Z CnQ” 0
m n
- (7.4.124)
e’ _
meZ
m#0
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Similarly

o _ n
Q1= —\/Ep > ot (7.4.125)

meZ
m#0

and rest of the terms in Qp contribute to Qy. Now since Q% = 0, from (7.4.118)) we get

(@1 +Qu+Q1)(Q1+Qu+Q_1)=0

- (Q%) + ({Q1,Q0}) + ({Ql, Q1)+ Qg) +({Qo, Q_1}) + (Q2_1) —0 (7.4.126)

Now since by, ¢;, has ghost number —1 and +1 respectively, from ([7.4.122]) we see that Qp

has ghost number 1 and so does each @), :
V%, Q) = Q. (7.4.127)

Using
[N, Q:Q;] = (i + 7)Q:Q; (7.4.128)

Thus the N'®-cigenvalue of the terms in (7.4.126)) is respectively 2,1,0, —1 and —2 respec-
tively. Thus each term must be zero separately. In particular ¢); and ¢)_; are nilpotent.

Proposition 7.4.8. The cohomology of Q1 is isomorphic to F+.

Proof. Define the operators

2 1
R=4/—— at b, 7.4.129
o (7.4.129)
m#0
and
S={Qi.R} == > {o7,cma’, b} (7.4.130)
nmez
n,m7#0
Using the identity
{AB,CD} = A[B,C|D + AC|B, D]+ {A,C}DB + C[D, A]|B, (7.4.131)

199



we can simplify S as

S=1{Q,R} = — Z Z (cmbn [@Z . 0ty + {em, bu} ot al,,)

m=—00 =—00

m#0  m#0
e g— Z Z (—ncmbn5m+n70 + 5m+n,0ai_na:m)
U0 mA0
o0
= Z (=memb_m — afa’,,)
TA0
—1 00
- Z (—mcmb_m ata”, + Z —mcmb_m — :,Qoz:m)
m=—00 m=1
= Z (mc_mbm —at o —mepb_p, — oz;rloz:m)
m=1 (7.4.132)

= Z (me_mbm — o 0, — mA{cm, bop} + mb_pem — o), a2, — aZ,,a)

m=1
o0
= Z (me_mbp — a0y — m 4 mb_p,c, + m — aZ,,00))
m=1
o0
= Z (me_mbm + mb_pey — a0, —aZ, o))
m=1
:im<c by, + b_c —ioﬁ of—iof oﬁ)
—m=m —m=m m —m-m m —-m-m

=Y m (Nym + New + N, + N,,)

3
5

where the number operator NV, counts the number of b,, oscillators and so on. For example

+ IS S SR
[Nm, n} = [Ozfmam,an]
I P
= = Lo o] (7.4.133)
_ 1 +
= m( MO, —n) ",

Using similar calculations as above, it can be checked that

[@1,5] =0. (7.4.134)
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Thus we can diagonalise (); and S together. We look at (); = 0 eigenspace and decompose
it into eigenspaces of S :
AU = A o P A (7.4.135)
s#0
where J7; is the eigenspace of S with eigenvalue s. Suppose |1)) € %, then for s # 0,

) = ESIQM = E{Q,R}M - %QIRM (7.4.136)

so that 77 for s # 0 is Q-exact space. Thus the cohomology coh(Q1) of @Q; is isomorphic
to J°. Next,from the relation (7.4.132)), we conclude that #;° consists of states with no b,
and o, a~ oscillators. Thus we see that 7° C 4. Now since states in 5+ do not contain
a* or b, ¢ oscillators, S+ is Q;-closed. Thus S+ C 77 or equivalently J#° = #+. Next
note that 7+ does not contain any Q;-exact state. Indeed if |¢)) € H#+ is Q;-exact then
there exists |x) € #* such that

) = Qilx) = \/g > aT,emlx)- (7.4.137)

MEZ
m#0

But then for ) # 0,|x) must have b,, and « oscillators which is a contradiction since
|x) € 2+, Thus we have
coh(Qy) = ) = ot

]

We now show that #rgr and #° are isomorphic which would imply that J#gst = S+
To proceed let us define

U={Qs, R} —S={Q1+Qy+Q_1,R} - S

{00t OB}, (7.4.138)

It can be checked using the (anti-)commutators of a®,b, ¢ that S commutes with N'°. Thus
they can be simultaneously diagonalised. Choose the simultaneous eigenbasis so that S is
a diagonal operator. Now from the definition of U, since R lowers N eigenvalue by 1 due
to af,, factor in each term of the sum defining R and Qg leaves N eigenvalue fixed and
Q_1 also lowers N eigenvalue by 1,U lowers the N' eigenvalue by one or two. Thus U is
represented by a lower triangular matrix. We now claim that

A5 = Ker(S) = Ker(S + U) =: 545V, (7.4.139)
Indeed if |1pg) € Ker(S) then
W)y = (1=S7'U+ST'US™'U —...) |tho) € Ker(S + U), (7.4.140)
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since
(S—i—U) (1—S*1U—|—571US*1U—...) |1/10> = (S—U—i—US*lU—...—i—U—US*lU—i—...) W0>

= 5 |tho)
=0.
(7.4.141)
The factor of S~! makes sense because it always acts on Ult) which has N'* < 0 and S~! is
well defined on such states. This implies Ker(S) C Ker(S + U). Since U is lower triangular,
Ker(S+U) C Ker(S). Thus we have proved the claim. We now repeat the argument for ¢,
with Q. We begin by observing that

[S+U,Qp] = 0. (7.4.142)
Indeed
[S + U7 QB] = [{QB; R} ) QB]
= QpRQp + RQ% — QER — QpRQp (7.4.143)
=0

where we used nilpotency of Qg. We again diagonalise Qg and S + U together. We look at
the Qg = 0 eigenspace and decompose it into eigenspaces of S + U :

A0 = AT @ D AT (7.4.144)
t£0

Note that we have proved that 4% = J£°V. For a state 1) € S£°TV, ¢ #0

(S+U)) = 7 {@sR} 9}
QpR|Y)

) =
(7.4.145)

S| = | =

so that J£°TV t # 0 is Qp-exact. Thus cohomology of Qp is nontrivial only in %QB:O.
Thus we have proved that

Hisrst = coh (Qp) = Ker(S + U) = ker(S) = H'™" = coh (Qy) . (7.4.146)

Finally we want to check that inner product is positive definite on Ker(S + U) using the
positive definiteness of inner product on Ker(S). Any state in Ker(S + U) is of the form

)= (1-STU+STUSTU—..)[t), Itho) € Kex(S). (7.4.147)

We claim that
(@llv") = (Wollvh) - (7.4.148)

To prove this claim we observe that inner product of two states is nonzero only when their
lightcone numbers N add to zero. Now (¢[[1') is a linear combination of terms of the form

(to|((s7'0)™) (s70)"
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Since S has N'® = 0 (since it commutes with N'¢) and U is a sum of N'* = —1 and N = —2
terms, hence (S71U)™ has N'¢ < 0 unless m = 0. To compute the inner product we will need

to use the commutation relations between ((S~'U )m)Tand (S7'U)"™ and the inner product
vanishes unless m = n = 0. This proves the claim and hence the positive definiteness of the
inner product.

We now complete the proof of no-ghost theorem.

Proof of J7cq = HBrst = Hightcone
In the previous section, we proved that JBrsr = Hightcone- We Now prove that Joq =
Fsrst. Consider the map

Hoq — HABRsT

[9) — [0, 1) (7.4.150)

where [¢) is a matter CFT state. From the expression for the BRST charge, we see that

Qplt, 1) = e (L2 = 8a0) [0, 1) =0 (7.4.151)
n=0

where we used the fact that b,| {) = 0 for n > 0 and ¢,| }) = 0 for n > 0. We also used
the fact that L) = 0 for n > 0 and L{|¢)) = |¢), see and recall that the normal
ordering constant a = 1 in covariant quantisation. Thus states in J#¢q gets mapped to
() p-closed states. Note that .7 is obtained by modding out null states and so, we need to
show that the map is well-defined. Indeed if

[¥) — W) € (7.4.152)

then |1, ]) — |[¢,]) must be @ p-exact since |, ]) — [¢,]) has norm zero and the norm is
positive definite on J#grgr by the isomorphism of Jgrgt With 7 ightcone. We now show that
the map is injective. Indeed if |, ]) — [¢/,]) is @ p-exact, there exists |x) such that

[, ) — [¥' 1)) = QlX) (7.4.153)

Now since | |) has ghost number —% and @p has ghost number 1, |x) must have ghost

number —2. Thus we can expand |y) as

)= b xns 1)+ (7.4.154)
n=1
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where the ellipsis contains states with at least one ¢ and two b excitations. Then we get

QB’X> = Z (Z Cm (erm - (sm,O) bn |Xm¢>>

[e.9]

= Z cmLTmb—n |Xn \L> + Z (COLglb—n - COb—n> |Xn \L>

m,n=1 n=1

[e.9]

= > L™ b |z, 1)+ cob (LE = 1) [xa 1) (7.4.155)

m,n=1 n=1

[e.9]

= Z Cer,nmbfn|Xn7¢>

m,n=1
= ZL |Xn7

where we have retained terms on the RHS which correspond to ghost ground states since
the LHS has only ghost ground states. Terms on the RHS which have ghost excitations must
vanish independently because of different ghost numbers of each individual terms. We used
the anti-commutator

{(Bs e} = G (7.4.156)

Thus we see that

Z L™, [Xn) - (7.4.157)

Now since the LHS satisfies the physicality condmon

(L = 0mo) (I¥) = [¢)) =0, m >0, (7.4.158)

the right hand side is also physical. On the other hand, a state of the form

Z L™ |xn) (7.4.159)

is obviously orthogonal to all physical states and hence it is spurious as well as physical
implying that it is null. This shows that |¢)) = [¢/) in the quotient space #¢q.

We now show that the map is surjective. Take a ()g-cohomology class and consider the
operator N’ = 2N~ + N, + N, which counts the total number of (twice the) a;, b and ¢
excitations. One can check that R has N' = —1 and Qg + Q1 has terms with with varying
N’ but no term with N’ = 1. Thus U = {R, Qo+ Q_1} cannot increase N’. Noting the
|1g) € Ker(S) has N’ =0 and S has N’ = 0 we see that the state

)= (1-S'U+S'USTU —...) |vh) (7.4.160)
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has N’ < 0, but by definition N’ > 0 and hence N’|1)) = 0 and hence it has no,a; b or ¢
excitations implying that
|¢) € Ker(S +U) (7.4.161)

is of the form [¢, ) for some |¢)) € g and hence has a preimage. Thus we have proved
that %Q = %RST‘
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Chapter 8

String Compactification

8.1 Toroidal Compactification

8.1.1 T-duality of Closed Strings

For the closed string, Let us take 22° to be periodic. The massshell condition becomes

u 2
M? = =p'py = ()" + (N = 1)

2 4, -
= (PR) + (N =1)

Adding the two equation gives
2 2 2

s N R ~

M :ﬁ a/Q a(N—FN—Z)

and substracting them gives )
nw+N—-N=0

The first term in the mass equation is the contribution from momentum n/R in 2% direction.
The second term comes from the tension of the string stretching w times around the s' picking
up a contribution of 2rwRT to the mass, where T = 1/27¢’ is the string tension. Let us look
at the massless spectrum. A state becomes massless if n = w = 0 and N = N = 1. These
are the (24)2 level 1 states from string theory. Let us list them: (i) o”;a",|0,p), u,v =
0,1,...,24. This as before breaks as a Graviton, dilator and the anti- symmetric B-field.
(ii) o1 &%5)0; p) and aa"]0; p) which are both vector fields. The fields ;6% |0;p) £
& 110;p) can be identified with the gauge fields coming from the metric and B-field in
26 dimensions respectively. (iii) oG’ |0; p) is another scalar which can be identifield with

the scalar ¢ coming from the metric.
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Appendix A

Wigner’s Classification of
Representations of Poincaré Group

In this appendix, we will briefly review Wigner’s little group method of classifying the
irreducible representations of the Poincaré group. The idea is mathematically enlightening
and and motivated a lot of research in representation theory. But here we will not delve into
the mathematically rigorous treatment, the interested reader can look up [L0] for a summary
of the mathematical theory. Rather we will take a more physical approach on the lines of
Weinberg’s quantum theory of fields book [I6]. We begin by discussing Wigner’s proposal
of interpreting elementary particles as irreducible representations of the Poincaré group. We
assume familiarity with basic terminology of topology.

A.1 Projective Representations

Let |U) be a state in Hilbert space H. Note that any two states |¥) and |®) which are
nonzero and related by

W) = \|[®) XeC:=C\{0} (A.1.1)
are the same quantum mechanical states. So it is pertinent to consider the quotient space
of H* = H\{0} as P(H) := H*/ ~ where |V) ~ |®) if and only if (A.1.1)) is true. The
quotient space P(H) is called the projectivised Hilbert space. Recall that the probability
amplitude of transition from |¥) to ® is given by

(V] ®)
(U w) (2| )

p(|V),[®)) =

In the quotient topology on P(#), p induces a continuous mapf| on P(#) which we denote
by p. A homeomorphism 7" : P(H) — P(H) satisfying

p(TTV], T(®]) = p(| V), |®))

it is a standard result in quotient topology. See for example Topology by Munkres.
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where [®], [V] are equivalence classes in P(H), is called a projective automorphism. The set
of all such maps, denoted by Aut(P(#)), is a group called projective automorphism group.
The action of this group on P(H) leaves transition probabilities invariant. Now consider a
particle in the Minkowski space R%P~1. The symmetry group of this space is precisely the
Poincaré group?] which we denote by P. Let two observers O and O, related by A € P,
measure the quantum mechanical particle. In general, there measurement result will reveal
different states, say [W] and [V’] respectively. Thus physically one expects that transition
probabilities in O and O’ be same. This means that the two states must be related by some
projective automorphism:

(U] = Tp[¥'], for some Ty € Aut(P(H)).

If O = O then T) = Id and we should have T = T7q = Id €Aut(P(H)). Lastly if a third
observer 0", related to O by I', measures the state then we must impose Ty o Tt = Tjor.
Thus the change of frame induces a representation II : P — Aut(P(#)). This is called the
projective representation.

A.2 Elementary Particles

The representation (II,H) of the Poincaré group is called irreducible if the only nontrivial
closed invariant subspace of H is H. That is II(P)(V) C V if and only if V' = H. The closed
condition is technical: we want the invariant subspace to be a Hilbert space in its own right
which is not automatically true in infinite dimensional Hilbert space unless the subspace is
closed.

Wigner suggested that the irreducible projective representations of the Poincaré group cor-
respond to elementary particles within the quantum system under consideration. Wigner’s
argument was as follows: an elementary particle in a quantum mechanical system is a vector
in P(H). As discussed, different observers will see different vectors in P(H) corresponding to
the elementary particle. All these vectors must be related by some projective automorphism.
The set of all these vectors constitutes P—invariant subspace of P(H) and hence we obtain
a subrepresention of (II, ). This subrepresentation can be thought of as a subsystem which
is elementary if it is irreducible (otherwise it will have more smaller subsystems). This re-
duces the problem of determining all relativistic free particles in Minkowski spacetime to the
mathematical task of finding all irreducible projective representations of the Poincaré group.

2mathematically speaking, the symmetry group of a Riemannian manifold (M, g) is the group of all
diffeomorphisms from M to itself whose pullback preserves the metric.
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A.3 Projective Representations of the Poincaré
Group

Let us now take a look at the Poincaré group more closely. We begin by defining semidirect
product.

Definition A.3.1. Let H and N be groups and suppose there is a a group homomorphism
¢ : H — Aut(N). Then the semidirect product of H by N, denoted H x N which has H x N
as underlying set, and multiplication defined by (h,n) - (h',n") = (hh',ne(h) (n')).

Each element of the Lorentz group SO(1, D — 1) defines an automorphism of R»P~! defined
by matrix multiplication. Thus we can form the semidirect product SO(1, D — 1) x RVP~1,
The physically relevant Poincaré group is the semidirect product of the proper orthochronous
Lorentz group and the abelian translation group. That is

P =15S0(1,D —1)=SO(1,D — 1); x R-P~!

where SO(1,D — 1); is the connected component of identity in the Lorentz group. The
Poincaré algebra is generated by the generators of translations and Lorentz transformations
denoted by P* and M* respectively. They satisfy the Poincaré algebra:

Z: [(Myuws Mpo] = 1o Myus = 0o Mo — NowMpy + 1o My,
i [Py, M) = 10upFPs — Nuo By
i[P,, P, = 0.

The third commutator says that P, commutes among themselves. So we start with states

in P(H) which are simultaneous eigenvectors of P*. We label all other degrees of freedom
by o. We have

Pu,‘/}q,a = qqu,a-

Note that infinitesimal translations are represented by U = 1 — ¢P"¢, and repeating this,
we obtain finite translations
U(l,a) = e ",

so that '
U(l,a)t,, = e Ty 4.

These U(I,a) are the projective representations of the translation part of the Poincaré
group. Usually the physical requirement restricts U to be unitary which restricts P* to be
Hermitian. Recall that

(Aya)- (N,d')=(AN,a'+Aa) in P
(Aya) = (A1, —Aa).

An infinitesimal Poincaré transformation with parameters w, € is unitarily represented as
7
Ul+w,e)=1+ §wu,,M’“’ —e, P+ .. ..
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So For a general A € SO(1,D — 1) we have
UA,a)UL+w,€)U(A,a)' =U (AL +w)A™ " Ae — AwA™"a) .
Using infinitesimal version upto linear order in w, we get
i . _ ? _ Y _
U(A,a) |1+ EwWM“ —e, PMUNa) =1+ 3 (AwA l)uu M" — (Ae — AwA la)MPM.
Comparing coefficients of w,, and €,, we get

A
U(A,a)PPU (A, a)™t = (AT1)0 P,

a 1% a—lz —1\ M —1\¥ )\p_aA 1) aP A
U(A, a)M*"™U(A, a) (ATH5 (A7) (M PP+ a’P*) (A51)

Our aim now is to find the projective representation of the Lorentz part of the Poincaré
group. Indeed if U(A,0) = U(A) is such a representation then

-WW)%U—WMW)¥WWM%J
UMASP Yy o
Z()WM%m
So we must have
¢p0 ZCO'O' A P wApU (A32)

In general, this representation is reducible. since this is a unitary representation, a theorem
in representation theory says that it is completely reducible, that is it can be written as a
direct sum of irreducible representations of invariant subspaces of eigenvectors of P* with
eigenvalue Ap. Our goal is to classify all such irreducible representations. To do so, we first
calculate the orbit of action of Lorentz group on RVP~1. Tt is clear that SO(1, D — 1); fixes
p? for all p € RVP~! but when p? < 0 then it also fixes the sign of p". Accordingly we get
the following orbits:

1. p> =m? > 0 : one sheeted hyperboloid.
2. p* = —m? < 0 : two sheeted hyperboloid corresponding to p® > 0 or p® < 0.
3. p?> =0 : cone with vertex at the origin.

Now given any p*, one can choose (depending on the orbit of p*) a standard ¢* such that
P = Li(p)g”
where L, € SO(1,D — 1);. By above discussion
Upo = N(P)U (Ly(P)) Yy,
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where N(p) is some normalesation factor. Now for any A € SO(1, D — 1); we have

U(MN)Ypo = N(p)U(MU(L(p)) g0
= N(p)U(L(Ap))U (L™ (Ap)AL(p)) .0,

where we used property of group representations. Note that
L™ (Ap)AL(p)g = L™ (Ap)Ap = q.

The set of all such elements of A is called the stability group of ¢ also called the little group.
For any two elements W, W in the little group of ¢, we have

W)ty = ZD W)thgor

and
WW wq i Z D Z D ” wq o
- Z DUJ’ 0’,0”( )wq,a”
= Z DY o (WW )iy,
where
Do (VW) = 3 D (W)Dly (V).

Thus we see that D?(W) is a representation of the little group. So putting W(A,p) =
L7Y(Ap)AL(p) we have

U( Ap ¢qa ZDO'O' Ap)¢lZ0

So that
( @Z}pa_N ZDUU U( (Ap))@z)QG

Ap ZDO‘O' Ap)wApU

Hence apart from the normalisation factor, the problem of finding unitary irreducible repre-
sentations of Poincaré group has been reduced to finding unitary irreducible representations
of the little group corresponding to each orbit. So we first find the little group corresponding
to each orbit.

1. ¢* =m? > 0 : by going to rest frame, we can set ¢ to ¢* = (0,0,--- ,0,m). Looking at
the form of this vector, we can see that the little group is SO(1, D —2); < SO(1,D —
1);.
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2. ¢> = —m? <0 :, by going to rest frame, we can take ¢* to be ¢* = (m, 6) Clearly the
little group is SO(D — 1).

3. ¢*> = 0 : the little group computation is not so obvious. Although it turns out to be
the Euclidean group E(D — 2) = SO(D — 2) x RP~2. This is the isometry group of
RP~2 with the Euclidean metric.

In ¢> = 0, one case is ¢* = 0 whose stabiliser is the whole Poincaré group P.

H Gender Orbit Little Group  Unitary Representation H
¢> = —m?  Mass shell SO(D —1) Massive
¢ = —m? Hyperboloid SO(1,D —1); Tachyonic
=0 Lightcone E(D —2) Massless
g =0 Origin P Zero Momentum

Physically, Tachyonic representations are not accepted. So we will only deal with the other
two. One can use the little group method to find all irreducible representations of the Eu-
clidean group. The idea is to go to the Lie algebra of E(D—2) and identify the “translations”
generators and repeat the procedure above. The upshot of this computation is that we get
two orbits and the corresponding little groups are called short little groups. The correspond-
ing unitary irreducible representations are labelled as helicity and infinite spin. The analogue
of the Lorentz group here is obviously SO(D — 2). The short Little group corresponding to
infinite spin is SO(D — 3) and that for infinite spin is SO(D — 2).

Next one can use Young Tableau to embed the irreducible representations of the Little
groups in all cases into tensorial representations. For the particular case that we will be
dealing with, we would like to find the massless irreducible representations of dimension
(D — 2)? of the Poincaré group. It turns out that it is the direct sum of three irreducible
parts:

Traceless symmetric & Antisymmetric & Trace (Scalar)

Dim: (D-2)(D-1) _q (D—-2)(D -3) ]
2 2
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Appendix B

Symmetry (Generators: (zenerators of
the Conformal Algebra

In this appendix, we describe the general principle of symmetry transformations at classical
and quantum level and the general method of finding the generators of symmetry transfor-
mation. We also describe the consequences of symmetries in classical and quantum theories
namely, Noether’s theorem and Ward identities respectively. As an application, we compute
the generators of conformal symmetry and the corresponding charges and describe the Ward
identities.

B.1 Continuous Symmetry Transformations

Let ® : RbP=1 — M be a field from the spacetime to some target manifold. Its dynamics
is governed by an action by virtue of the Euler-Lagrange equations. The action generally is
a functional of ® and its first derivatives:

S[®] :/de£(®,8M<I>),
where £(®,0,®) is the Lagrange density. Suppose we transform the field as ¢ — &' =
F(®). Then the action also transforms as S[®] — S[P] =: S'[P].

Definition B.1.1. (i) A transformation of field & — &' = F(®) is called a symmetry of
the action S[®] is under the transformation of field the action remains invariant in the
sense that S'[®] = S[P].

(ii) A symmetry & — & = F(P) of the action is called a continuous symmetry is the
transformation of the field is parametrised by a continuous parameter . A symmetry
which is not continuous is called discrete.

(iii) A symmetry & — &' = F(®) is called a spacetime symmetry if the field transformation
results from a spacetime transformation. Otherwise it is called internal symmetry.
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(iv) A symmetry & — &’ = F(P) is called local symmetry if the field transforms differently
at different spacetime points. If the field transforms in exactly the same way at every
spacetime point, then it is called global symmetry.

Since we will mostly be considering symmetries with respect to conformal transformations
which is a spacetime transformation, we will restrict our attention to spacetime symmetries.

B.1.1 Spacetime Symmetries

Consider a spacetime transformation

r — 2'(z)

O(x) — @ (2/) (B-L1)

Under such a transformation, the field ® changes in two ways: first by the functional change
¢’ = F(P) where we have expressed the new field ' as a function of the old field ®, and
second by the change of argument x — /. Expressing the new field at 2/, we see that

O () = F(0(z)). (B.1.2)

This way of looking at symmetry transformations is called active transformation. Under
such a transformation, the action transforms as

g = / 4P L (' (x), 0,8 (x))
_ / P2 (9 ('), 0,0 (')
:/¢w£w@@»%f@mD

:/de ox'

Dz
where ‘%—g} is the Jacobian of variable change. We have changed variables z — 2’ according
to the transformation (B.1.1)) and used (B.1.2) and in first two steps finally again made a
change of variables in last step.

L (F(®(x)), (92" /22™) 0, F (8 (x)))

Example B.1.2. (i) Translation: it is defined as

ot — P =" + o
O (x4 a) = d(x)

It is clear that S’ = S. The action is invariant under translations, unless it depends
explicitly on position.
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(ii) Lorentz Transformation: under Lorentz transformation A € SO(1,D — 1),

= Az
&' (Ax) = Lp®(x),
where we have assumed that the fields transform linearly with respect to Lorentz
transformation, so that the operators L, furnish a representation of the Lorentz group.

Depending on the action and the representation ® of the Lorentz group, the action
may or may not be invariant under Lorentz transformation.

(iii) Scale Transformations: it is defined as
= Ax
d'(\r) = \"2D(x)

where A is the dilation factor and A is called the scaling dimension of the field ®.
Note that the Jacobian of this transformation is |0x'/0z| = AP. Thus we have

S = )\D/dD:BE ()\_A(P, /\_1_A8M(I>)
As an example, consider the action of a massless scalar field ¢ in spacetime dimension
D:
Slp] = /deﬁﬂgoﬁ“cp.
It is easily checked that this action is scale invariant if we make the choice

1
A=-D—-1
2

B.2 Infinitesimal Transformation and Noether’s
Theorem

We now consider continuous transformations and study their effect when the parameter is
very small. We will keep the parameter only upto linear order. Such a general transformation

may be written as
oxt

dw,
O (2') = ®(x) + w,

2 =t 4w,

ST (B.2.1)

Ow,

(),

where {w,} is a set of infinitesimal parameters.

Definition B.2.1. The generator G, of a symmetry transformation is defined by the fol-
lowing expression

0,P(x) = ®'(2) — P(x) = —iw,G,P(2).
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Observe that to first order in wy,

oF
(I)/ / — @ —
(@) = B(a) + wus (@)
ot 0F
— N o ! /
= (2) waéwa(‘%@(w)—l—waéwa (z').
This gives an explicit expression for the generators:
oxt oOF
G ®=—0,9 — — B.2.2
iGa dw, On 0w, ( )

Example B.2.2. (i) Infinitesimal translation: for an infinitesimal translation by a vector
e# (the index a becomes here a spacetime index), we have dx*/de” = 0¥ and F is trivial.
Thus using (B.2.2), we see that the generator is simply

(ii) Infinitesimal Lorentz transformation: an infinitesimal Lorentz transformation has the

form
't =zt 4wt
=t 4wy nta”.
Using (1.2.1), we can easily see that w,, = —w,,. This antisymmetry gives the
following variation of coordinates:

ozt 1 L
S, = g et —nat).
pv

The field ® transforms as
1
.F((I)) = LA(I), LA ~1— Eiwp,,Sp”
where S?” is some Hermitian matrix obeying the Lorentz algebra (generator of Lie
algebra in the particular representation in which ® belongs). Using (B.2.2), we get
1 1 1
§iwpl,L’”’<I> = iwpy (0P — 2P0") O + 52'pr5"”¢)

where LP” is the generator. The factor of % preceding w,, in the definitions of L*”
and S?” cancels the double counting of transformation parameters. The generators of
Lorentz transformations are thus

L =i (2P — 2" 0°) + S*.

In particular, if we take ®(x) = x, then F is trivial and the generator is simply L, =
i (2,0, — x,0,) which is just the angular momentum operator. Thus on spacetime,
Lorentz transformation is generated by the angular momentum operator.
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(iii) Infinitesimal dilatation: let © — 2’ = (1 + a)x be an infinitesimal scaling then it is
clear that dx/da = x. Next, the field transforms as ®'((1 + a)z) = (1 + a)"2®(x)
where A is the scaling dimension of the field ®. Thus we have

0F 0
—=—((1-Aa)® = —Ad(z).
7 _ (1~ Aa)a(e)) = ~A()
Thus using (B.2.2)), we find that the generator of infinitesimal dilation in the represen-
tation @ is
D = —izhd, —iA. (B.2.3)

B.2.1 Generators of Conformal Transformations

As described in Subsection [5.2.1] conformal transformation in dimensions D > 3 include
four different kinds of transformations. We will now find the spacetime generators of those
transformations which we directly indicated in Subsection [5.2.1

(i) Translation: we already computed the generator for any field ®. In particular, for the
field ®(x) = z, the generator is

(ii) Lorentz transformation: the spacetime generator for Lorentz transformation was com-
puted to be
L, =i(z,0,—x,0,).

(iii) Dilatation: let a be an infinitesimal dilatation parameter, then © — 2’ = (1 4+ a)z.

Thus we have
oz

da

Hence the generator D of dilatation can be directly read off from (B.2.2]),

.

D = —iz"0,.

(iv) Special conformal transformation: let b* be an infinitesimal SCT parameter. Then
spacetime transforms as

ot =zt + 2(x - b)at — (z - z)bM.

Thus we quickly find that

Hence the generator is



(v) Two dimensional infinitesimal conformal transformations: in Subsection we con-
cluded that infinitesimal conformal transformations in complex coordinates are given

by
2 =z2+4¢e(z) = z+25n( 2"
nez
F=z+e(2) =2+ & (-2"")
nez

So the generator corresponding to 2’ = z—¢,2"" and Z’ = z—&,2""! can be computed
similar to above cases. Indeed for the transformation of z, we have

0z

T n+1‘

Oen :
Using (B.2.9)] we get,

l, = —2""10,.

Similarly we get the conjugated generator.

B.2.2 Noether’s Theorem

In classical field theory, the dynamics is governed by the action of the classical field. A
classical symmetry is a symmetry of the action under some transformation of the field.
Noether’s theorem is a statement about a particularly fruitful consequence of continuous
symmetries.

Theorem B.2.3. Let ® be a classical field and S[®] be its action. Given a continuous
symmetry parametrised by w, of the action, there exists a conserved current j* in the sense
that when the classical equations of motion are satisfied then

Ouje = 0.

We will not prove this theorem here as it is a standard result covered in any quantum field
theory course. If we explicitly write the transformation of field as

n
2t =2t +w, ox
dw,
& (2') = D) + wag—i(x),

then the conserved current j* is given by

o 2 0L OF
T _ AH _
Ja {a@@aﬁ g ”5} Son D (0p) 0o (B.2.4)

Lwe have to remove i since we are already in complex coordinates.
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where £ is the Lagrangian density. Under the transformation, the action changes as follows:
08 = —/d:ng(?uwa, (B.2.5)

which after integration by parts yields the conservation of current under the assumption that
the classical equations of motions are satisfied. Observe that we can add any antisymmetric
tensor to the current without affecting its conservation. Indeed for

Jo = Ja T OB}, Bl =-B"

0,0, BX" = 0 by antisymmetry. Thus although the expression (B.2.4]) for j* is cannonical,
it is somewhat ambiguous.

B.3 Quantum Symmetries: Ward Identity

In previous sections, we discussed classical symmetries which has nothing to do with quantum
field theory. We now discuss what it means for a classical symmetry to also be a symmetry
of the corresponding quantum theory.

In quantum theory, the most important objects are correlation functions. Consider a theory
with field ® with action S[®]. The n-point correlation function is given by

(®(e)0(ea) - D(a,)) — L DU ) Bltn) P50
J[D®]exp(—S[2])

We can say something about the classical symmetry in quantum theory by looking at these
correlation function. Indeed, suppose & — &’ be a symmetry of the action S[®], that is a
classical symmetry. Thus we see that in quantum theory, we need the exponential exp(—S[®])
to be invariant under the transformation. But this is not it. Under this transformation, the
integral measure [D®] may change non trivially and may not remain invariant. Then even if
the field transformation is a classical symmetry, it may not be a quantum symmetry in the
sense that the correlation functions change under the transformation and hence the quantum
theory may change entirely.

We have the following theorem if we assume that the integral measure is also invariant under
a continuous classical symmetry transformation.

Theorem B.3.1. Suppose (B.1.1) and (B.1.2)) be a classical symmetry of the action S[P].
Suppose also that the functional integration measure [D®] is also invariant under (B.1.2)).
Then we have

(P (1) -+ @ (x,)) = (F (R (21)) -+ F (P (1))

n

Proof. The proof is straightforward using change of variables. m
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Example B.3.2. (i) Under translation x — x + a, we have

(@ (21 +a)- @ (zn+a)) = (P(x1) - @ (2n)) -

(ii) Lorentz invariance of scalar fields results in the following identity

(@ (M) - @ (Ayy)) = (@ (27) - - @ (2])) -

(iii) Scale invariance of scalar fields ¢; with scaling dimensions A; gives

(61 (Az1) - b (Azn)) = A7 XT3 (g (1) -+ i (2)) -

Another consequence of a classical symmetry and the invariance of functional integral mea-
sure is the following theorem:

Theorem B.3.3. (Ward Identities) Let be a classical infinitesimal symmetry of the
action S[®] with generators G, and corresponding classical conserved current j*. Suppose
also that functional integral measure is invariant under the symmetry transformation of
fields. Then we have

a%t (Ja (@)@ (1) -+ @ () = —2'25 (@ = 2:) (@ (21) - Ga® (23) - - - @ ()

Ward identity is the quantum version of Noether’s theorem. Given a classical symmetry, it
survives quantisation if the corresponding Ward identity holds and we say that the classical
symmetry is also a quantum symmetry.

Definition B.3.4. A classical symmetry & — &’ is called an anomaly if the corresponding
Ward identity does not hold. In this case we say that we have a quantum symmetry breaking.

There are other aspects of symmetry braking a quantum level, spontaneous symmetry break-
ing for example in which case the projective unitary representation of the classical symmetry
group does not keep the ground state of the quantum theory invariant. We will not delve
further into these topics.

We will use Ward identities in conformal field theory very often. Ward identity of fields
characterises them as primary or non primary fields.

222



Bibliography

1]

[10]

[11]

[12]

[13]

[14]

K. Becker, M. Becker, J.H. Schwarz, String Theory and M-Theory: A Modern Intro-
duction, Cambridge University Press (2007).

R. Blumenhagen, D. Liist, L. Theisen, Basic Concepts of String Theory, Springer-Verlag
(2013).

R. Blumenhagen, E. Plauschinn, Introduction to Conformal Field Theory: With Appli-
cations to String Theory, The Lecture Notes in Physics, Springer (2009).

P. Di Francesco, P. Mathieu, D. Sénéchal, Conformal Field Theory, Spinger (1996).
F. John, Partial Differential Equations, Spinger-Verlag (1982).
D. Liist and D. Skliros, Handle Operators in String Theory, arXivi1912.01055.

S. Minwalla, Lectures on String theory, Link: |https://theory.tifr.res.in/
~minwalla/.

J. Polchinksi, String Theory, Volume 1: Introduction to the Bosonic String, Cambridge
Monographs on Mathematical Physics, Cambridge University Press (2018).

J. Polchinksi, String Theory, Volume 2: Superstring theory and Beyond, Cambridge
Monographs on Mathematical Physics, Cambridge University Press (2018).

R.K. Singh, Projective Representations of Poincaré Group, Link: https://ranveeri14.
github.io/wigner.pdf.

M. Ram Murty, Michael Dewar, Hester Graves, Problems in the Theory of Modular
Forms, Springer Nature (2016).

Stany M. Schrans, A Companion Reader to Polchinski’s String Theory, Link - https:
//hepnotes.files.wordpress.com/2020/11/joes-book-1.pdf.

D. Tong, Lecture Notes on String Theory, ArXiv: https://arxiv.org/pdf/0908.0333.pdf
(2009).

Loring W. Tu, An Introduction to Manifolds, Springer (2011).

223


https://arxiv.org/pdf/1912.01055.pdf
https://theory.tifr.res.in/~minwalla/
https://theory.tifr.res.in/~minwalla/
https://ranveer14.github.io/wigner.pdf
https://ranveer14.github.io/wigner.pdf
https://hepnotes.files.wordpress.com/2020/11/joes-book-1.pdf
https://hepnotes.files.wordpress.com/2020/11/joes-book-1.pdf
0908.0333

[15] S. Weinberg, Photons and Gravitons in Perturbation Theory:  Derivation of
Mazwell’s and Finstein’s FEquations, Phys. Rev. 138, B988 (1965), DOI:
https://journals.aps.org/pr/abstract /10.1103 /PhysRev.138.B988.

[16] S. Weinberg, The Quantum Theory of Fields, Volume 1: Foundations, Cambridge Uni-
versity Press (2005).

224


10.1103/PhysRev.138.B988

	Contents
	The Free Relativistic Particle
	The Action of a Free Relativistic Particle
	Symmetries of the Action
	Poincaré invariance
	Diffeomorphism Invariance

	Quantisation
	First Method
	Second Method
	Third Method - Introducing Einbein
	Fourth Method - Gauge Fixing


	The Relativistic String
	Nambu-Goto Action
	Symmetries of the Nambu-Goto action
	Equations of Motion

	The Polyakov Action
	Equivalence of SP and SNG
	Equation of Motion
	Symmetries of SP


	The Closed String
	The Closed Classical String
	Fixing a Gauge
	Solving the Equation of Motion: Mode Expansion

	Quantisation of Closed String
	Covariant Quantisation
	Poisson Brackets
	Cannonical Commutation Relations
	Constructing the Fock Space
	Ghosts
	Normal Ordering and the Quantum Virasoro Algebra
	Imposing the Constraints
	The Physical Hilbert Space

	Lightcone Quantisation
	Residual Gauge Freedom: Lightcone Gauge
	Quantisation
	String Spectrum
	Fixing Lorentz Invariance
	First String Excitation


	Open Strings and D-Branes
	Solving the Equations of Motion
	Neumann Boundary Condition at Both Ends (NN)
	Dirichlet Boundary Condition at Both Ends (DD)
	Neumann at =0 and Dirichlet at = (ND)
	Dirichlet at =0 and Neumann at = (DN)
	NN for 0p and DD for p+1D-1: D-Branes

	Quantisation
	Covariant Quantisation
	Lightcone Quantisation
	String Spectrum

	Discrete Diffeomorphisms: Oriented verses Nonoriented Strings

	Conformal Field Theory
	Conformal Transformations
	Infinitesimal Conformal Transformations

	Conformal Group in D3
	Infinitesimal Conformal Transformations: D3
	Finite Conformal Transformations: D3
	The Conformal Group and its Algebra

	Conformal Group in D=2
	Local Conformal Transformations
	Infinitesimal Generators: The Witt Algebra
	The Global Conformal Group

	Primary Fields
	Representation of the Conformal Group in D Dimensions

	Consequences of Conformal Invariance: Classical Aspects
	Translation Invariance: Energy-Momentum Tensor
	Other Noether Currents

	Consequences of Conformal Invariance: Quantum Aspects in Dimension D3
	Correlation Functions
	Ward Identities

	Consequences of Conformal Invariance: Quantum Aspects in Dimension D=2
	Correlation Functions
	Ward Identity
	Operator Product Expansion and Primary Operators
	Central Charge


	2d Conformal Field Theory and its Application to Bosonic String Theory
	Quantisation of a 2d CFT
	Radial Quantisation
	The state-operator correspondence: vertex operators
	Operator product expansion and Mode Algebra
	Hilbert space of the theory

	Torus partition function and modular invariance
	Geometry of the torus

	Conformal Field Theory with Boundary
	Stress tensor and boundary conditions

	Applying Conformal Field Theory to String Theory

	The Polyakov Path Integral and BRST Quantisation
	Polyakov path integral
	Fadeev-Popov gauge fixing
	The Weyl anomaly

	The String S-matrix
	String interactions and sum over woldsheet topologies
	Vertex Operators
	Calculating the path integral
	Moduli space of higher genus surface

	Tree Level Amplitudes
	BRST Quantisation and No-Ghost Theorem
	Generalities on BRST quantisation
	BRST quantisation of point particle
	BRST quantisation of the string
	Proof of the no-ghost theorem


	String Compactification
	Toroidal Compactification
	T-duality of Closed Strings


	Wigner's Classification of Representations of Poincaré Group
	Projective Representations
	Elementary Particles
	Projective Representations of the Poincaré Group

	Symmetry Generators: Generators of the Conformal Algebra
	Continuous Symmetry Transformations
	Spacetime Symmetries

	Infinitesimal Transformation and Noether's Theorem
	Generators of Conformal Transformations
	Noether's Theorem

	Quantum Symmetries: Ward Identity


