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1 Introduction

Let us begin by defining the Ramanujan’s tau function which was introducded by Ramanu-
jan in his seminal 1916 paper [1] called “On Certain Arithmetical Functions”. Consider q

as a formal variable and consider the infinite product

∆(q) = q
∞∏
n=1

(1− qn)24. (1.1)

The function ∆(q) is called the discriminant function. One should first argue that this
definition makes sense. Indeed, the convergence criteria in analysis says that a product∏

an converges (absolutely) if and only if the sum
∑

log an converges (absolutely) and∑
log (1 + an) converges (absolutely) if and only if

∑
an converges (absolutely). Now let

q be a complex number so that log q makes sense with log being the principal branch of
complex logarithm. One can now immediately see that the infinite product ∆(q) in (1.1)
converges absolutely if |q| < 1. Since the infinite product converges absolutely, we can also
rearrange the terms in the product so that we can collect all powers of qn together and
write:

∆(q) :=
∞∑
n=1

τ(n)qn. (1.2)

The formal equality in (1.2) defines the Ramanujan’s tau function τ(n). It is clear that
τ(n) is always an integer. Some values of τ(n) are given in the table below: Ramanujan
observed several properties of τ(n). For example, observe that

τ(2) = −24, τ(3) = 252 and τ(6) = −6048 = τ(2)τ(3).

Infact Ramanujan made the following three conjectures:

Conjecture 1. (Ramanujan’s Conjecture): The tau function satisfies the following:
(a) For m,n ∈ Z with gcd(m,n) = 1, we have

τ(mn) = τ(m)τ(n).
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n τ(n) n τ(n) n τ(n)

1 1 11 534612 21 −4219488

2 −24 12 −370944 22 −12830688

3 252 13 −577738 23 18643272

4 −1472 14 401856 24 21288960

5 4830 15 1217160 25 −25499225

6 −6048 16 987136 26 13865712

7 −16744 17 −6905934 27 −73279080

8 84480 18 2727432 28 24647168

9 −113643 19 10661420 29 128406630

10 −115920 20 −7109760 30 −29211840

(b) For a prime number p and m ≥ 1, we have

τ(pm+1) = τ(p)τ(pm)− p11τ(pm−1).

(c) For a prime number p, we have | τ(p) |≤ 2p
11
2 .

These properties are quite surprising and mysterious. Why would a function defined in such
an unusual way satisfy such relations? The first two of the Ramanujan’s conjectures were
proved by Mordell [2] but the mathematical understanding remained a mystery until Erich
Hecke in 1937 [6, 7] came up with a systemetic theory, now called Hecke theory, to study
more general functions of this form. Infact the first two conjectures are generalised to more
general functions using Hecke theory. All of the three Ramanujan’s conjectures are now
theorems. The third conjecture remained unresolved until 1974 when Deligne [5] proved it
as a consequence of his proof of the Weil’s conjectures. To date, there is no other way to
prove the third Ramanujan’s conjecture. The tau function satisfies many other interesting
properties. For example note that the values of τ(p) in the table above is even when p

(here and elsewhere) is prime. Infact one can prove that τ(p) is even for every prime p.

In terms of modular arithmetic, we write a ≡ b(modc) if c divides b − a and we say that
a is congruent to b mod c. With this notation, the following conguences hold for the tau
function [4]

1. τ(p) ≡ 1 + p3(mod 25)

2. τ(p) ≡ 1 + p(mod 3)

3. τ(p) ≡ p+ p10(mod 52)

4. τ(p) ≡ p+ p4(mod 7)

5. τ(p) ≡ 1 + p11(mod 691)

Many more congurences are true for the tau function but this is not the main aim of this
review. There is one other conjecture which goes by the name Lehmer’s conjecture and first
appeared in a paper by D.H. Lehmer [3] and it is still a conjecture.
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Conjecture 2. (Lehmer’s Conjecture): For every integer n > 0, we have that τ(n) ̸= 0.

Such an innocuous statement but notoriously difficult to prove. From the first two Ramanu-
jan’s conjectures, it can be shown that Lehmer’s conjecture is equivalent to the nonvanishing
of τ(p) for every prime. This conjecture has been verified for n < 816212624008487344127999

[8]. There are some other observations. For example Lehmer himself proved that if n0 is
the least integer such that τ(n0) = 0 then n0 must be a prime. Secondly, one easily ob-
serve using the second congruence above that τ(p) ̸= 0 for every prime p ≡ 1(mod3). So
to prove Lehmer’s conjecture, we just need to show that τ(p) does not vanish for primes
p ≡ 2(mod 3). Many other partial results are known but the conjecture remains unresolved.
Infact there is a much more stronger conjecture due to Atkin and Serre.

Conjecture 3. (Atkin-Serre Conjecture): For any ε > 0 and prime p, there is a constant
C(ε) > 0 such that | τ(p) |> C(ε)p

9
2
−ε.

There is no clue about this conjecture and we leave it undisturbed here. We will now look
at the systematic framework to study the discriminat function.

2 Modular forms

The theory of modular forms occupies the central position in number theory in the sense that
it finds applications ranging from geometry, topology, discrete mathematics, representation
theory to theoretical physics. Roughly speaking, modular forms are holomorphic functions
on the upper half plane H := {z = x+ iy ∈ C : y > 0} which satisfy certain transformation
property with respect to the modular group SL2(Z) defined below and satisfy certain growth
condition. Let us make this precise now. Define the following set of matrices

SL2(Z) :=

{(
a b

c d

)
: a, b, c, d ∈ Z, ad− bc = 1

}
.

One can easily check that SL2(Z) is a group with respect to matrix multiplication. This
group acts on H via linear fractional transformations as follows: for z ∈ H and γ =

(
a b
c d

)
,

we have

γ · z =
az + b

cz + d
.

We can easily check that this is a group action. We now define modular forms precisely.

Definition 2.1. (Modular Form): A function f : H −→ C is called a modular form of
weight k ∈ Z on SL2(Z) if

1. f is holomorphic.

2. f
(
az+b
cz+d

)
= (cz + d)kf(z) for all

(
a b
c d

)
∈ SL2(Z) and z ∈ H.

3. f(z) is bounded as z → i∞.
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The set of all modular forms of weight k is denoted by Mk and forms a vector space. In-
deed, it is easy to check that the sum of two modular forms of weight k again has correct
transformation property. Something more is true. The product of two modular forms of
weight k1 and k2 is again modular form of weight k1 + k2 and the direct sum of the vector
space of modular forms of all weights forms a ring.

Using (i) of above definition for the matrix T = ( 1 1
0 1 ) we get f(z + 1) = f(z). Using

this periodicity and (iii) of the above definition, one can show that any modular form can
be expanded in a Fourier series as

f(z) =
∞∑
n=0

af (n)q
n, where q = e2πiz. (2.1)

The complex numbers af (n) are called the Fourier coefficients of the modular form f. If
af (0) = 0 then f is called a cusp form. One can also have a more general definition, if we
only require that the Fourier expansion have only finitely many negative powers of q. Such
forms are called weakly holomorphic modular forms and the set of all such forms is denoted
by M !

k. We will have more to say about these forms in the next section. The first examples
of modular forms are given by Eisenstein series. For k ≥ 4 and even, put

Ek(z) =
∑

(m,n)∈Z2\{(0,0)}

1

(mz + n)k
, z ∈ H. (2.2)

We can prove that Ek(z) is a modular form of weight k [10]. Their Fourier expansion is
given by

Ek(z) = 1− 2k

Bk

∞∑
n=1

σk−1(n)q
n, (2.3)

where Bk are Bernoulli numbers defined by

x

ex − 1
=

∞∑
k=0

Bk
xk

k!

and
σk(n) =

∑
d|n

dk

is the kth divisor sum (here d|n means that d divides n). Infact it turns out that all modular
forms can be expressed in terms of Eisenstein series. One can prove that [10] the space of
modular forms of weight k is a finite-dimensional vector space with a basis

{Eα
4E

β
6 : 4α+ 6β = k, α, β ∈ Z, α, β ≥ 0}.

Note that this basis allows only even k. Infact standard results in modular forms show that
there are no modular forms of negative weight, odd weight and weight 2 [10]. Notice also
that E2 as defined in (2.3) makes perfect sense. Infact one can prove that the expressions
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for E2 in (2.2) and (2.3) agree and for every
(
a b
c d

)
∈ SL2(Z), E2 satisfies the following

transformation property:

E2

(
az + b

cz + d

)
= (cz + d)2E2(z) +

6c(cz + d)

πi
. (2.4)

This in particular implies that E2 is not a modular form as expected. Later we will see
that E2 is an example of what are called mock modular forms.

After all that jargon we come to the point. Consider q ∈ C as a function of z ∈ H
given by q = e2πiz. Then |q| < 1 and hence the discriminant function can be considered as
a holomrophic function on H. It turns out that [10]

∆(z) =
E3

4(z)− E2
6(z)

1728
. (2.5)

(2.5) implies that ∆(z) transforms like a modular form of weight 12. Moreover since the
constant term in the Fourier expansion of Ek is 1, thus ∆(z) is a cusp form of weight 12.
But this review is about Lehmer’s conjecture and it seems that we have lost it somewhere
in discussing the theory of modular forms. But one thing that the theory gives us is an
expression for the tau function. In the theory of modular forms, the second most important
construction (only after Eisenstein series) are the Poincaré series. The Poincaré series
are cusp forms and span the space of cusp forms. The construction also gives us explicit
Fourier expansion of the Poincaré series. Moreover it is known that the space of cusp forms
of weight 12 is one dimensional. Thus the Poincaré series of weight 12 and the discriminant
function are multiples and the constant of proportionality is determined by comparing the
first Fourier coefficient of the Poincaré series. The upshot of all this mumbo-jumbo is that
we have the following expression for the tau function:

τ(n) =
2πn

11
2

β∆

∑
c>0

K(1, n, c)

c
J11

(
4π

√
n

c

)
. (2.6)

where β∆ = 2.840...(the constant of multiplicity) is a constant, K(m,n, c) for m,n ∈ Z is
the Kloosterman sum defined by

K(m,n; c) :=

c−1∑
d=1

e
2πi

(
md̄+nd

c

)

with 0 ≤ d̄ ≤ c−1 defined by dd̄ ≡ 1( mod c) and Jℓ is the order ℓ Bessel function of the first
kind. Does this expression say anything about the Lehmer’s conjecture. Unfortunately no.
Why did we discuss modular forms then? Hopefully, it turns out that the a generalisation
of modular forms have a part to play in Lehmer’s conjecture as we will see now. We will
now discuss mock modular forms will put E2 in perspective.

3 Harmonic Maass Forms and Mock Modular Forms

Harmonic Maass forms and mock modular forms have their origin in Ramanujan’s last
deathbed letter to G.H. Hardy in 1920. In this enigmatic letter, Ramanujan listed 22
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functions which he called mock theta functions. The transformation properties and the
precise definitions did not appear in literature until recently in 2002, Zwegers came up with
a systematic framework to study them [15]. Ramanujan’s mock theta functions are now
known to be mock modular forms which we will describe in this section. Let us first discuss
the general philosophy of mock modular forms. Suppose that we have a function which is
holomorphic but does not have the transformation property of modular forms. If we can find
a function (nonholomorphic in general) such that the sum of these two functions has correct
transformation property then we say that our original function is a mock modular form. The
sum which is called the completion of the mock modular form is essentially nonholomorphic
but has correct transformation properties. Such forms are called nonholomorphic modular
forms. We impose a further harmonic condition to get what are called harmonic Maass
forms. The reader is referred to [13] for the detailed theory. Let z = x + iy. Define the
holomorphic and antiholomorphic derivative as follows:

∂

∂z
=

1

2

(
∂

∂x
− i

∂

∂y

)
;

∂

∂z̄
=

1

2

(
∂

∂x
+ i

∂

∂y

)
.

We now define the hyperperbolic Laplacian of weight k ∈ R as follows:

∆k = −y2
(

∂2

∂x2
+

∂2

∂y2

)
+ iky

(
∂

∂x
+ i

∂

∂y

)
= −4y2

∂

∂z

∂

∂z̄
+ 2iky

∂

∂z̄
.

Let us now define harmonic Maass forms.

Definition 3.1. (Harmonic Maass Form): A real-analytic function f : H −→ C is called a
harmonic Maass form of weight k ∈ Z if the following conditions are satisfied:

1. f
(
az+b
cz+d

)
= (cz + d)kf(z) for all

(
a b
c d

)
∈ SL2(Z) and z ∈ H.

2. ∆k(f) = 0.

3. There exists a polynomial Pf in variable q−1 (remember q = e2πiz) such that f(z)−
Pf (z) = O(e−εy) for some ε > 0 as y → ∞.

If we just have f(z) = O(eεy) as y → ∞ then f is called a harmonic Maass form of
manageable growth.

The third condition is technical. Let us decode it a bit with an example. Consider a
function f given by the following Fourier series:

f(z) =

N∑
n=1

af (n)

qn
+

∞∑
n=0

af (n)q
n,

where N is a positive integer. Note that as |q−1| = e2πy → ∞ as y → ∞. This in particular
implies that |f(z)| grows exponentially as y → ∞. Now suppose we consider the polynomial

Pf (z) =
N∑

n=1

af (n)

qn
.
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Then we have

f(z)− Pf (z) =
∞∑
n=0

af (n)q
n.

Thus now we only have positive powers of q in the expansion of f(z) − Pf (z) which also
implies that f(z) − Pf (z) is at bounded as y → ∞. But if f is of manageable growth
then it may not be possible to cancel the growth by subtracting any polynomial in q−1.
This is the precise meaning of the third condition. The space of harmonic Maass forms of
manageable growth is denoted by H !

k and the space of harmonic Maass forms is denoted
by Hk. Ofcourse Hk ⊂ H !

k. By the modular transformation law, we again have a Fourier
expansion but slightly complicated (see [11] for details of the proof): for k ̸= 1, harmonic
Maass forms of manageable growth have Fourier expansion of the shape

f(z) = f(x+ iy) =
∞∑

n=n0

c+f (n)q
n + c−f (0)y

1−k +

n′
0∑

n=−∞
c−f (n)Γ(1− k,−4πny)qn, (3.1)

where Γ(s, z) is the incomplete gamma function defined as

Γ(s, z) =

∞∫
z

e−tts
dt

t

and n0, n
′
0 are integers (possibly negative, positive respectively). Note that the Fourier

expansion can be cannonically broken into two parts: we call

f+(z) =

∞∑
n=n0

c+f (n)q
n

the holomorphic part of f and

f−(z) = c−f (0)y
1−k +

n′
0∑

n=−∞
c−f (n)Γ(1− k,−4πny)qn

the nonholomorphic part of f . If f satisfies the first growth condition of (3) in above
definition then c−f (0) = 0 and n′

0 < 0. Observe that any weakly holomorphic modular form
is a trivial example of harmonic Maass form with the nonholomorphic part being zero and
the holomorphic part being the weakly holomorphic modular form itself. Thus we have the
following sequence of containments:

Mk ⊂ M !
k ⊂ Hk ⊂ H !

k.

There are two operators on harmonic Maass forms which are of importance and bridge
hamronic Maass forms with modular forms. These two operators are defined in a more
uniform way but here we will define them in a way which will make our discussions easier
to follow. Define the shadow map by

ξk : H !
k −→ M !

2−k
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ξk(f(z)) = ξk(f
−(z)) = (1− k)c−f (0)− (4π)1−k

∑
n>0

c−f (−n)n1−kqn, (3.2)

where f is given as in (3.1) and c−f (−n) denotes complex conjugation. The image ξk(f)

is called the shadow of f . One easily sees that if f ∈ Hk then the shadow of f is a
cusp form. It turns out that this map is surjective (but not injective since all weakly
holomorphic modular forms map to zero). This means that we can associate a harmonic
Maass form of appropriate weight to every weakly holomorphic modular form. When k

is a negative integer, we can define another operator called Bol operator. It is defined as
follows: D1−k : H !

k −→ M !
2−k, where D = 1

2πi
∂
∂z . One can show that if f ∈ H !

k is given by
its Fourier expansion as in (3.1) then we have

D1−k(f)(z) = −(4π)k−1(1− k)!c−f (0) +

∞∑
n=n0

c+f (n)n
1−kqn. (3.3)

But unlike ξk, the Bol operator is not surjective. The image D(f) of f under the Bol
operator is called the ghost of f . We now define mockm modular forms.

Definition 3.2. (Mock Modular Form): A mock modular form of weight (2 − k) is the
holomorphic part f+ of a harmonic Maass form of weight (2−k) for which f− is non trivial.
The weakly holomorphic modular form ξ2−k(f) is called the shadow of the mock modular
form f+ and the harmonic Maass form f is called the completion of f+.

We will end this section by showing that E2 is a mock modular form. Indeed if we put

E2(z) = E2(z)−
3

πy
,

then using some simple manipulations and (2.4) we can show that E2 satisfies (1) in the
definition of harmonic Maass forms. We need to make sure that ∆2(E2) = 0 which again is
a simple computation. Finally we can check that ξ2(E2) = 3

π . This shows that E2 is a mock
modular form of weight 2 with shadow 3/π.

4 Mock Modular Form Whose Shadow Is The Discriminant Function

Since ξk is a surjective map, there exists (not unique) a mock modular form whose image
is the discriminant function. One such mock modular form is

M∆(z) =

∞∑
n=−1

a∆(n)q
n =

39916800

q
− 2615348736000

691
+

∞∑
n=1

a∆(n)q
n, (4.1)

where

a∆(n) = −(2π)11!n− 11
2 ·

∞∑
c=1

K(−1, n, c)

c
· I11

(
4π

√
n

c

)
, n > 0, (4.2)

with Iℓ being the ℓth Bessel function of the second kind. The shadow of the mock modular
form M∆ is 11π11β∆∆(z) (remeber β∆ was defined in (2.6)). The proof of this fact depends
on some special harmonic Maass forms which goes by the name Maass-Poincaré series. Let
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us not bother about the proof for a moment. Some of the coefficients a∆(n) computed
numerically are

a∆(1) = −73562460235.68364...

a∆(2) = −929026615019.11308...

a∆(3) = −8982427958440.32917...

a∆(4) = −71877619168847.70781...

(4.3)

The coefficients seem to be irrational. Indeed, this is a conjecture [13].

Conjecture 4. (Ken Ono): The coefficients a∆(n) are irrational for every positive integer
n.

This conjecture implies the Lehmer’s conjecture. Infact Lehmer’s conjecture is implied by
any one of the coefficients a∆(n) being irrational. We will show that if τ(p) = 0 for some
prime p then all of the coefficients a∆(n) are rational. Now you can see why any of these
coefficients being irrational implies the Lehmer’s conjecture. Using (3.3) and the fact that
c−f (0) = 0 for the completion f of the mock modular form f+ = M∆, we have

D11 (M∆) (z) =

∞∑
n=−1

n11a∆(n)q
n (4.4)

is a weakly holomorphic modular form of weight 12. Next, Duke and Jenkins have con-
structed a basis for the space of weakly holomorphic modular forms [14] using the Eisenstein
series, discriminant function and the j-function defined by

j(z) =
E3

4(z)

∆(z)
=

1

q
+ 744 + 196884q + . . . .

The j-function transforms as weight 0 modular form but is weakly holomorphic. Using the
results of Duke and Jenkins, we can write

D11 (M∆) (z) = a∆(−1)
[
∆(z)

(
j2(z)− 1488j(z) + 713304

)]
+ a∆(1)∆(z). (4.5)

One can easily prove that the j-function has integer Fourier coefficients so that A(n) defined
by

∆(z)
(
j2(z)− 1488j(z) + 713304

)
=

∞∑
n=−1

A(n)qn

are all integers. Comparing the Fourier coefficients from (4.4) and (4.5), we get

a∆(n) =
11!A(n) + a∆(1)τ(n)

n11
. (4.6)

Thus if τ(n) = 0 then (4.6) implies that a∆(n) is rational. Now suppose τ(p) = 0 for some
prime p. Then using the Ramanujan’s conjectures (a) and (b), we see that τ(pkn) = 0 for
every integer k ≥ 1 and n coprime to p. So we have proved that

– 9 –



Theorem 4.1. If τ(p) = 0 for some prime p then a∆(p
kn) is rational for every positive

integer k and n coprime to p.

Using Hecke theory, Ono shows that [13] for every prime p, the Fourier series

∞∑
n=−p

(
p11a∆(pn)− τ(p)a∆(n) + a∆(n/p)

)
qn

is a weakly holomorphic modular form of weight −10 with integer Fourier coefficients. Here
it is understood that a∆(n/p) = 0 if n/p ̸∈ Z. With τ(p) = 0, the (np)th Fourier coefficient
of the above weakly holomorphic modular form is p11a∆(p

2n) + a∆(n) ∈ Z. Now if n is
coprime to p then Theorem 4.1 along with the fact that p11a∆(p

2n) + a∆(n) ∈ Z implies
that a∆(n) is rational. Thus we have proved that

Theorem 4.2. If τ(p) = 0 for a prime p then a∆(n) is rational for every integer n coprime
to p.

Combining the two theorems, we get the following theorem.

Theorem 4.3. If τ(p) = 0 for some prime p then a∆(n) is rational for every positive
integer n.

So we just need to show that any one of the coefficients a∆(n) defined in (4.2) is irrational
to prove the Lehmer’s conjecture.
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