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Abstract

In these set of notes, we present the mathematical theory of classification of

all projective representations of the Poincaré group. We begin with the standard

discussion of Lie groups and Lie algebras from manifold point of view and slowly

move to matrix Lie groups which are of relevance in the discussion on Poincaré

group. We present the basic ingredients of Mackey Theory required for the clas-

sification. We have omitted the proofs of mathematical results to facilitate un-

derstanding without going into the technicalities of proofs, although we have

included references for all the results. Finally we end with Wigner’s idea of el-

mentary particles in quantum field theory and its relation to projective represen-

tations of the Poincaré group.
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1 Introduction

Eugene Wigner in his seminal paper [11] introduced the idea of elementary particles in

a quantum theory as the irreducible projective representations of the symmetry group

of the underlying spacetime. In particular, for quantum field theory in the Minkowski

space, elementary particles are the irreducible projective representations of the Poincaré

group which is the symmetry group of the Minkowski space. In the same paper, Wigner

introduced the little group method to classify the representations of the Poincaré group.

The idea of little group which was very physical in nature sparked a flurry of work in

pure mathematics, representation theory in particular. Mackey and Bargmann [3, 4, 8]

completed the mathematical theory of this physical idea. which classified all unitary

representations of the Poincaré group. We present this theory without going into the

technical details.

We begin discussing the basic background on Lie theory and representations. We assume

familiarity with topology and manifold theory.

2 Lie Groups

We begin by defining Lie groups.

Definition 2.1. A set G is called a Lie group if G is a smooth manifold endowed with

a group structure such that the multiplication map

µ :G×G −→ G

(g1, g2) 7−→ g1 · g2

and the inverse map

i :G −→ G

g 7−→ g−1

are smooth maps between manifolds.

Example 2.2. (i) The set Rn of n-tuple of real numbers is a group with respect to

component wise addition as group operation. It is also a smooth manifold.

(ii) The set GL(n,R),GL(n,C) is the set of n×n invertible matrices with real, complex

entries respectively. These are groups under matrix multiplication. It can also

be shown that these groups are smooth manifolds and the matrix multiplication

operation and inversion operation are smooth maps (see Example in Appendix A).

Hence these are Lie groups.
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(iii) Let

G = R× R× S1 =
{

(x, y, u) | x ∈ R, y ∈ R, u ∈ S1 ⊂ C
}
,

where S1 is the set of complex numbers with modulus 1. Equip G with the group

product given by

(x1, y1, u1) · (x2, y2, u2) =
(
x1 + x2, y1 + y2, e

ix1y2u1u2

)
Then G is a Lie group.

Definition 2.3. A subset H of a Lie group G is called a Lie subgroup if:

(i) H is a (algebraic) subgroup of G.

(ii) H is an immersed submanifold1 of G via the inclusion map.

(iii) the operations on H are smooth.

In particular, a Lie subgroup is itself a Lie group.

Before we present examples of Lie subgroups, we record a theorem which makes it easier

to decide whether a given subgroup of a Lie group is a Lie subgroup or not.

Theorem 2.4. (Closed subgroup theorem) [7, Theorem 20.12] Let H ⊂ G be a subgroup

of G. If H is closed in the subspace topology on H, then H is a Lie subgroup of G.

Example 2.5. The following sets are easily checked to be subgroups of GL(n,C) or

GL(n,R). Using elementary results from topology 2, it can be shown that these subgroups

are indeed closed in and hence are examples of Lie subgroups and in particular Lie groups.

(i) The special linear group: the set of n×n real (complex) matrices with determinant

1, denoted by SL(n,R) (SL(n,C))is a Lie subgroup of GL(n,R) (GL(n,C)) .

(ii) The orthogonal group: O(n) := {A ∈ GL(n,R) | ATA = 1}.

(iii) The special orthogonal group: SO(n) := O(n) ∩ SL(n,R).

(iv) The unitary group: U(n) := {A ∈ GL(n,C) | A†A = 1}.

(v) The special unitary group: SU(n) := U(n) ∩ SL(n,C).

1see [10, Section 9] for a discussion on submanifolds.
2For example, it can be shown that the inverse image of a singleton of a continuous function be-

tween topological spaces is closed in the domain. This argument easily guarantees closedness in all of

the examples. In particular for (i), it is the determinant map, for (ii), it is the map A 7−→ ATA and so

on.
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2.1 Matrix Lie Groups

Of particular importance in physics are matrix Lie groups which appear as symmetry

groups of physical theories. Using the above theorem, we can define matrix Lie groups

without going to manifold theory. But we will keep on exploring the connections when-

ever necessary.

Definition 2.6. A subgroup G ⊂ GL(n,C) is called a matrix Lie group if given any

sequence {Am}∞m=1 ⊂ G we have that either

lim
m→∞

Am = A ∈ G, or G 6∈ GL(n,C).

Remark 2.7. The convergence of a sequence of matrices in above definition is component

wise. We look at n2 many sequences of real numbers and then form the corresponding

limiting matrix. Moreover, the condition on G exactly means that G is closed in GL(n,C)

in the subspace topology. Note that GL(n,C) is trivially a matrix Lie group. Since

M(n,C) – the set of all n × n complex matrices is not even a group (inverses of many

elements does not exist), so we consider matrix Lie groups to be subgroups of GL(n,C).

It turns out that most of the interesting examples of Lie groups are matrix Lie groups

but it is not true in general. Indeed one can prove that every compact Lie group is

a matrix Lie group3 but the converse is not in general true. We will see examples of

noncompact matrix Lie groups soon.

Example 2.8. (i) All the examples in Example 2.5 are matrix Lie groups.

(ii) Generalised orthogonal group: Let n, k be two positive integers. Define a bilinear

form B : Rn+k × Rn+k −→ R by

B(x,y) :=
n∑
i=1

xiyi −
k∑
j=1

xn+jyn+j,

where x = (x1, . . . , xn, . . . xn+k),y = (y1, . . . , yn, . . . yn+k) ∈ Rn+k. Define the set

O(n, k) as the set of matrices which preserve the bilinear form B:

O(n, k) := {A ∈ GL(n+ k,R) | B(Ax, Ay) = B(x,y), ∀ x,y ∈ Rn+k}.

If we write

1n,k :=

(
1n 0

0 −1k

)
where 1n is the n× n identity matrix, then it is easy to see that

O(n, k) =
{
A ∈ GL(n+ k,R) | AT1n,kA = 1n,k

}
.

3This follows from the famous Peter-Weyl theorem.
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O(n, k) is called the generalised orthogonal group. We also define SO(n, k) :=

O(n, k)∩SL(n+k,R). It is easily seen that the determinant of generalised orthogonal

matrices is ±1. We usually call SO(1, n) the proper Lorentz group.

(iii) Symplectic Group: Let

J :=

(
0 1n

−1n 0

)
.

Then we define

Sp(n,R) :=
{
A ∈ GL(2n,R) | ATJA = J

}
,

Sp(n,C) :=
{
A ∈ GL(2n,C) | ATJA = J

}
,

Sp(n) := Sp(n,C) ∩ U(2n).

The groups Sp(n,C) and Sp(n,R) are called the symplectic groups and Sp(n) is

called the compact symplectic group. It turns out that4 detA = 1 for every A ∈
Sp(n,C).

There are two more examples which we will be interested in. Before introducing those

examples, we need a definition.

Definition 2.9. (Semidirect product of groups) Let G,H be two groups and ϕ : G →
Aut(H) a homomorphism of groups5, semidirect product of G and H, denoted by GnϕH,

whose underlying set is G×H and the group operation is defined by

• :(G×H)× (G×H) −→ G×H
((g1, h1), (g2, h2)) 7−→ (g1, h1) • (g2, h2) := (g1g2, h1ϕ(g1)(h2)) .

We usually omit ϕ from notation nϕ whenever it is clear.

Example 2.10. (i) The Euclidean Group: It is the isometry group of the flat Eul-

cidean space6 Rn. It is given by the semidirect product of rotations and translations:

ISO(n) := O(n) nRn,

where the homomorphism ϕ : O(n) −→ Aut(Rn) is the standard matrix multipli-

cation action of A ∈ O(n) on Rn which is a automorphism since A is invertible.

4although somewhat difficult to prove
5Aut(H) denotes the set of all group isomorphism from H to itself which is group under composi-

tion of maps.
6flat Euclidean space means Rn endowed with the flat Euclidean metric so that the isometry

group can be defined as those transformations which preserve the metric
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(ii) The Poincaré group: It is the isometry group of the flat Minkowski space7 R1,n. It

is given by

ISO(1, n) := O(1, n) nR1+n,

where the homomorphism ϕ : O(1, n) −→ Aut(R1+n) is as in above example.

2.2 Topological Properties

Since Lie groups are smooth manifolds, they are in particular topological spaces. Thus

we can talk about the topological properties of Lie groups. Moreover, since matrix Lie

groups are defined to be closed subsets of GL(n,R) which can be considered as subset

of Rn2
. Thus we can talk about the topological properties of matrix Lie groups. In

particular we can talk about the compactness and connectedness of matrix Lie groups.

We have the following theorem.

Theorem 2.11. [5, Section 1.3]

(i) The matrix Lie groups O(n), SO(n),U(n), SU(n) and Sp(n) are compact.

(ii) The matrix Lie groups GL(n,C), SL(n,C), the generalised orthogonal group, the

symplectic group and the Poincaré group are non compact.

Theorem 2.12. [5, Section 1.3]

(i) The matrix Lie groups GL(n,C), SL(n,C), SO(n),U(n), SU(n) and Sp(n) are con-

nected.

(ii) The matrix Lie groups O(n),O(n, k) and the Poincaré group are not connected.

Remark 2.13. Although connectedness is an important property for Lie groups, but we

can get away with not having this property by restricting to the connected component

of the Lie group containing the identity. This is what we will do when dealing with the

representations of the Poincaré group.

Another topological property which will be important is simple connectedness8.

Theorem 2.14. [5, Section 1.3] SU(2) is simply connected while SO(n, k) is not simply

connected.

7the flat Minkowski space is R1+n endowed with the Minkowski metric ηµν = diag(1,−1 . . . ,−1).

It is denoted by R1,n.
8See [9, Chapter 9] for a review of simple connectedness.
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2.3 Lie Group Homomorphism

Definition 2.15. Let G and H be Lie groups. A map Φ : G −→ H is called a Lie group

homomorphism if

(i) Φ is a group homomorphism.

(ii) Φ is smooth as a map between manifolds.

If Φ is a diffeomorphism of manifolds, then Φ is called a Lie group isomorphism.

Example 2.16. (i) The determinant map det : GL(n,C) −→ C× = C\{0} is a Lie

group homomorphism.

(ii) The map Φ : R −→ SO(2) given by

θ 7−→

(
cos θ − sin θ

sin θ cos θ

)

is easily checked to be a Lie group homomorphism.

2.3.1 The Adjoint Map

A particularly important Lie group homomorphism is the adjoint map defined as follows:

for each g ∈ G, the adjoint map Adg is defined by

Adg : G −→ G

h 7−→ Adg(h) := ghg−1.
(2.1)

This map is easily checked to be a Lie group homomorphism. Moreover note that Ad−1
g =

Adg−1 . We will have more to say about this map later.

3 Lie Algebra

3.1 Abstract Lie Algebra

Definition 3.1. A Lie algebra g is a finite dimensional vector space g over a field9 k with

an additional binary operation [·, ·] : g × g → g, called the Lie bracket, which satisfies

the following axioms:

(i) Bilinearity: [X, aY + bZ] = a[X, Y ] + b[X,Z] for all X, Y, Z ∈ g and a, b ∈ k.

(ii) Antisymmetry: [X, Y ] = −[Y,X] for all X, Y ∈ g.

9we will usually take k = R or C.
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(iii) Jacobi Identity: [[X, Y ], Z] + [[Y, Z], X] + [[Z,X], Y ] = 0 for all X, Y, Z ∈ g.

Two elements X and Y of a Lie algebra g commute if [X, Y ] = 0. A Lie algebra is

commutative if [X, Y ] = 0 for all X, Y ∈ g.

Example 3.2. (i) Let g = R3 and let [·, ·] : R3 × R3 → R3 be given by

[x, y] = x× y

where x× y is the cross product (or vector product). Then g is a Lie algebra.

(ii) The set M(n,C) with the Lie bracket given by

[A,B] := AB −BA

is a Lie algebra.

(iii) Let sl(n,C) denote the space of all X ∈ M(n,C) for which tr(X) = 0. Then sl(n,C)

is a Lie algebra with bracket [X, Y ] = XY − Y X.

(iv) Let V be a vector space. Then it is easy to check that the space End(V ) of all

linear operators on V is again a vector space. Infact End(V ) along with the Lie

bracket [φ, ψ] := φ ◦ ψ − ψ ◦ φ is a Lie algebra.

Definition 3.3. (i) A subalgebra of a real or complex Lie algebra g is a vector sub-

space h ⊂ g such that [H1, H2] ∈ h for all H1, H2 ∈ h. If g is a complex Lie algebra

and h is a real vector subspace of g which is closed under brackets, then h is said

to be a real subalgebra of g.

(ii) A subalgebra h of a Lie algebra g is said to be an ideal in g if [X,H] ∈ h for all X

in g and H in h.

Definition 3.4. (i) If g1 and g2 are Lie algebras, the direct sum of g1 and g2 denoted

by g1 ⊕ g2, is the vector space direct sum of g1 and g2, with bracket given by

[(X1, X2) , (Y1, Y2)] = ([X1, Y1] , [X2, Y2]) .

(ii) Let g is a Lie algebra and g1 and g2 are subalgebras of g. We say that g is the Lie

algebra direct sum of g1 and g2, and write g = g1 ⊕ g2, if g is the direct sum of g1

and g2 as vector spaces and [X1, X2] = 0 for all X1 ∈ g1 and X2 ∈ g2.

Definition 3.5. If g and h are Lie algebras, then a linear map φ : g→ h is called a Lie

algebra homomorphism if φ([X, Y ]) = [φ(X), φ(Y )] for all X, Y ∈ g. If, in addition, φ is

one-to-one and onto, then φ is called a Lie algebra isomorphism.
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Example 3.6. (The Adjoint map) For each X ∈ g, we have a Lie algebra homomor-

phism, denoted by adX , defined as follows:

adX : g −→ g

Y 7−→ [X, Y ].
(3.1)

adX is easily checked to be a linear map on g. The map ad : g −→ End(g) is called the

adjoint map.

Proposition 3.7. [5, Proposition 3.8] The map ad : g −→ End(g) is a Lie algebra

homomorphism, that is

ad[X,Y ] = adX ◦ adY − adY ◦ adX = [adX , adY ] .

Definition 3.8. (i) A Lie algebra g is called simple if the only ideals of g are g and

{0} and it is non commutative.

(ii) A Lie algebra g is called semisimple if it is isomorphic to direct sum of simple Lie

algebras.

Definition 3.9. Let g be a finite dimensional real or complex Lie algebra, and let

X1, . . . , Xd be a basis for the vector space g. Then the unique constants cijk such that

[Xi, Xj] =
d∑
i=1

cijkXk

are called the structure constants of g. It depends on the chosen basis.

Remark 3.10. In terms of the structure constants, the antisymmetry and Jacobi identity

of the Lie bracket takes the form:

cijk + cjik = 0,∑
n

(cjkncnlm + cklncnjm + cljncnkm) = 0.

for all j, k, l,m.

3.2 Lie Algebra of a Lie Group

Let G be a Lie group and Γ(G) be the set of all smooth vector fields on G. Then Γ(G)

is an R-vector space and also a C∞(G)-module where C∞(G) is the ring of all smooth

functions f : G −→ R. There is a natural bracket operation on Γ(G) defined as follows:

[·, ·] :Γ(G)× Γ(G) −→ Γ(G)

(X, Y ) 7−→ [X, Y ]f := X(Y f)− Y (Xf), f ∈ C∞(G).

9



It is easily checked that [·, ·] is a Lie bracket but there is one obstacle. As an R-vector

space, Γ(G) is infinite dimensional possibly of uncountable dimension. There is an easy

way of extracting a finite dimensional vector subspace of Γ(G) called the subspace L(G)

of left invariant vector fields. We will not describe this subspace here and content

ourselves with the following theorem.

Theorem 3.11. [7, Theorem 8.37] Let G be a Lie group and L(G) be the Lie algebra of

left invariant vector fields. Then there is a cannonical vector space isomorphism between

L(G) and TeG where TeG is the tangent space of G at identity. In particular, TeG can

be made into a Lie algebra with the bracket operation induced by the isomorphism.

Remark 3.12. For matrix Lie groups, as we will show the tangent space at identity is

isomorphic to a vector subspace of M(n,R) or M(n,C) depending on the Lie group (see

Theorem 3.19). Moreover it can be shown that (we shall not prove this) the Lie bracket

inherited from the Lie algebra of left invariant vector fields by Theorem 3.11 is simply

the commutator of matrices as in Example 3.2 (ii).

We make the following definition based on Theorem 3.11.

Definition 3.13. Let G be a Lie group. The Lie algebra of G denoted by g is the

tangent space of G at identity with the Lie bracket induced from L(G) using Theorem

3.11.

We will now try to find the Lie algebra of the matrix Lie groups. Recall that the

directional derivative Xγ,g of a smooth curve γ : R −→ G with initial point g ∈ G, that

is γ(0) = g is a linear map Xγ,g : C∞(G) −→ R given by

Xγ,g(f) = (f ◦ γ)′(0).

The directional derivative operator Xγ,g is called a tangent vector at g. We next define

the tangent space TgG at g to be the set of all tangent vectors at g obtained from all

smooth curves. That is

TgG := {Xγ,g | γ : R −→ G is a smooth curve throught g}.

This definition simplifies a bit if we restrict ourselves to matrix Lie groups. Indeed if G

is a matrix Lie groups then we can consider as being embedded in Rn2
or R2n2

depending

on whether G ⊂ GL(n,R) or GL(n,C). Then given a curve γ : R −→ G and a function

f ∈ C∞(G), we can talk of their derivatives separately. In particular, by chain rule, we

have

Xγ,g(f) = (f ◦ γ)′(0) = γ̇(0)f ′(γ(0)) = γ̇(0)f ′(g).
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This suggests the identification

TgG ∼= {γ̇(0) | γ : R −→ G is a smooth curve throught g}.

Infact something more is true. Before we state the result, we need to introduce the

matrix exponential.

3.2.1 The Matrix Exponential

Let X be an n×n matrix. We define the exponential of X, denoted eX or expX, by the

usual power series

eX =
∞∑
m=0

Xm

m!

where X0 = 1n is the identity matrix and Xm is the repeated matrix product of X with

itself. First of all to make sense of the infinite series definition of the matrix exponential,

we must make sure that the series converges in some sense. Indeed, one can show it

indeed converges in the Hilbert-Schmidt norm defined as

‖X‖ :=

(∑
i,j

|Xij|2
)1/2

.

We list the properties of the matrix exponential below.

Theorem 3.14. [5, Proposition 2.3, Theorem 5.3] Let , Y ∈ M(n,C). Then the following

holds:

(i) e0 = 1.

(ii)
(
eX
)†

= eX
†
.

(iii)
(
eX
)−1

= e−X .

(iv) e(α+β)X = eαXeβY ∀ α, β ∈ C.

(v) Baker-Campbell-Hausdorff (BCH) formula10

eXeY = exp

(
X + Y +

1

2
[X, Y ] +

1

12
[X, [X, Y ]]− 1

12
[Y, [X, Y ]] + . . .

)
where [X, Y ] = XY − Y X. In particular, if [X, Y ] = 0 then eXeY = eX+Y .

10The series on the right hand side may not be convergent. Given some conditions on ‖X‖, ‖Y ‖,
it can be shown that the series converges. We need matrix logarithm to prove this result. See — for

details.
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(vi) For any C ∈ GL(n,C),

CeXC−1 = eCXC
−1

.

(vii) det
(
eX
)

= etrX . In particular eX ∈ GL(n,C) ∀ X ∈ M(n,C).

(viii) exp : R −→ GL(n,C), t 7→ etX is a smooth map of manifolds and

d

dt
etX = XetX .

Last part of above theorem gives a way to construct smooth curve in GL(n,C). Infact,

this gives us an example of what are called one parameter subgroups. We define them

below:

Definition 3.15. Let G be a Lie group. A function γ : R −→ G is called a one parameter

subgroup of G if

(i) γ is smooth,

(ii) γ(0) = e ∈ G,

(iii) γ(t+ s) = γ(t)γ(s) for all t, s ∈ R.

Remark 3.16. One parameter subgroups are rather special curves to the manifold G.

So we can talk about the directional derivatives of the one parameter subgroup.

For matrix Lie groups, the one parameter subgroups can be characterised using the

matrix exponential.

Theorem 3.17. [5, Theorem 2.14] If γ is a one parameter subgroup of GL(n,C), then

there exists a unique n× n complex matrix X such that

γ(t) = etX .

The aim of introducing these notions is to characterise the Lie algebra of matrix Lie

groups without going to the vector field definition of Lie algebras. The following propo-

sition will be useful on the way.

Proposition 3.18. [7, Proposition 20.3] Suppose G is a Lie group and H ⊆ G is a Lie

subgroup. The one parameter subgroups of H are precisely those one parameter subgroups

of G whose directional derivatives at e lie in TeH.

We are now ready to characterise the Lie algebra of a matrix Lie group.

Theorem 3.19. Let G be a matrix Lie group. The Lie algebra g of G is the set of all

matrices X such that etX is in G for all real numbers t.

12



Proof. We will use our observation that

T1G ∼= {γ̇(0) | γ : R −→ G is a smooth curve throught 1}.

First suppose etX ∈ G for all t ∈ R. Then the curve γ : R −→ G given by γ(t) = etX is

a smooth curve in G with γ(0) = 1. Then by Theorem 3.14, we have that

γ̇(0) = Xe0 = X.

Thus X already belongs to the Lie algebra. Conversely suppose X ∈ g. We want to

show that etX ∈ G for every real t. Indeed consider the curve γ : R −→ GL(n,C) given

by t 7−→ etX . Then by Theorem 3.14, it is clear that γ is a one parameter subgroup in

GL(n,C). Now clearly the directional derivative of γ at 1

γ̇(0) =
d

dt
etX
∣∣∣∣
t=0

= X ∈ T1G = g.

Thus by Proposition 3.18, γ is a one parameter subgroup of G which implies that etX =

γ(t) ∈ G.

Remark 3.20. In physics, one usually considers the map t 7−→ eitX . So the computa-

tions usually differ by a factor of i. We will use the mathematicians approach here.

We now list the Lie algebras of classical matrix Lie groups. One might be thinking that

if exponentiating the Lie algebra elements give elements of the corresponding Lie group,

what part of the Lie group can be recovered using the Lie algebra. The answer varies

depending on the topological properties of the Lie group.

Theorem 3.21. [6, Theorem 12.2, Proposition 12.5] Let G be a matrix Lie group with

Lie algebra g.

(i) The exponential map exp : g −→ G is a diffeomorphism of a neighbourhood11 of

0 ∈ g to a neighbourhood of 1 ∈ G.

(ii) If G is connected then the exponential map is surjective from any neighbourhood of

0 ∈ g.

3.3 Lie Group Verses Lie Algebra Homomorphism

We begin by recording an important result.

11The topology on g is inherited from Rn2

or R2n2

depending on whether g ⊂ M(n,R) or g ⊂
M(n,C).
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Lie Groups Lie Algebra

GL(n,C) gl(n,C) = M(n,C)

GL(n,R) gl(n,R) = M(n,R)

SL(n,C) sl(n,C) = {A ∈ M(n,C) | tr(A) = 0}
SL(n,R) sl(n,R) = {A ∈ M(n,R) | tr(A) = 0}

U(n) u(n) =
{
A ∈ M(n,C) | A† = −A

}
SU(n) su(n) =

{
A ∈ M(n,C) | A† = −A, tr(A) = 0

}
O(n) o(n) = {A ∈ M(n,R) | At = A}

SO(n) so(n) = o(n)

O(n, k) o(n, k) = {A ∈ M(n+ k,R) | 1n,kAt1n,k = −A}
SO(n, k) so(n, k) = o(n, k)

Sp(n,C) sp(n,C) = {A ∈ M(2n,C) | ΩAtΩ = A} , Ω =

(
0 1

−1 0

)
Sp(n,C) sp(n,R) = {A ∈ M(2n,R) | ΩAtΩ = A}

Sp(n) sp(n) = sp(n,C) ∩ u(n).

Table 1: Classical Lie groups and their Lie algebras. See [5, Section 3.4] for proofs.

Theorem 3.22. [10, Theorem 16.14] Let Φ : G −→ H be a Lie group homomorphism

of Lie groups. Then the pushforward at e of this map Φ∗,e : TeG −→ TΦ(e)H is a Lie

algebra homomorphism. In particular, if Φ is a diffeomorphism, then Φ∗,e is a Lie algebra

isomorphism.

Example 3.23. Recall the adjoint map Adg is defined on the Lie group for each g ∈ G
(see Eq. 2.1). Since Adg(e) = geg−1 = e, so that the pushforward (Adg)∗,e : TeG −→
TeG is a Lie algebra homomorphism. Moreover since Ad−1

g = Adg−1 , thus (Adg)
−1
∗,e =

(Adg−1)∗,e. Thus (Adg)∗,e ∈ GL(g). Define the map Ad as follows:

Ad : G −→ GL(g)

g 7−→ Adg.

Then clearly Ad is a Lie group homomorphism.

Proposition 3.24. [5, Proposition 3.34] Let Ad : G −→ GL(g) be the Lie group

homomorphism as above. Then the induced map Ad∗,e : g −→ End(g) is given by

Ad∗,e(X) : g −→ g

Y 7−→ [X, Y ], X, Y ∈ g.

In particular Ad∗,e(X) = adX (see Eq. 3.1). We denote Ad∗,e = ad.

14



Remark 3.25. Above theorem guarantees that diffeomorphic Lie groups have isomor-

phic Lie algebras. The converse to this statement is not true in general. As we will see

below, the converse is true under stronger assumption of simple connectedness.

In case of matrix Lie groups, we can say more about the maps in Theorem 3.22.

Theorem 3.26. [5, Theorem 3.28] Let G and H be matrix Lie groups, with Lie algebras

g and h, respectively. Suppose that Φ : G → H is a Lie group homomorphism. Then

there exists a unique R-linear map φ : g −→ h such that

Φ
(
eX
)

= eφ(X)

for all X ∈ g. The map φ has following additional properties:

(i) φ (AXA−1) = Φ(A)φ(X)Φ(A)−1, for all X ∈ g, A ∈ G.

(ii) φ([X, Y ]) = [φ(X), φ(Y )], for all X, Y ∈ g.

(iii) φ(X) = d
dt

Φ
(
etX
)∣∣
t=0

, for all X ∈ g.

Example 3.27. Applying this theorem to the adjoint map, we have

AdeX = eadX , X ∈ M(n,C).

As mentioned in Remark 3.25, we have the following converse to the above theorem.

Theorem 3.28. [5, Theorem 5.6] Let G and H be matrix Lie groups with Lie algebras

g and h respectively, and let φ : g → h be a Lie algebra homomorphism. If G is simply

connected, there exists a unique Lie group homomorphism Φ : G→ H such that Φ
(
eX
)

=

eφ(X) for all X ∈ g.

Remark 3.29. Suppose G and H are simply connected Lie groups with Lie algebras g

and h respectively, along with a Lie algebra isomorphism φ : g −→ h. Then applying

above theorem for φ and φ−1, we get a Lie group homomorphisms Φ : G −→ H and

Φ−1 : H −→ G. The uniqueness part of the above theorem then says that these maps

are indeed inverses of each other and hence the Lie groups are diffeomorphic.

3.3.1 Universal Covers

In previous section, we saw that the Lie group homomorphisms between Lie groups G

and H and Lie algebra homomorphisms between their corresponding Lie algebras g and

h respectively are in one to one correspondence if G is simply connected. This property

will be of great importance when we go to representations of Lie groups. For simply
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connected Lie groups, the representations of the group and its Lie algebra are in one to

one correspondence.

But it turns out that many of the important Lie groups whose representations are most

important for physics applications are not simply connected, for example the Lorentz

group. That is why we consider the universal cover of Lie groups. Roughly speaking,

the universal cover of a Lie group is a simply connected Lie group12 whose Lie algebra

is same as the Lie algebra of the original Lie group. We make this precise now.

Definition 3.30. Let G be a connected Lie group. Then a universal cover of G is a

simply connected Lie group H together with a Lie group homomorphism Φ : H −→ G

such that the associated Lie algebra homomorphism (of Theorem 3.22) φ : h −→ g is a

Lie algebra isomorphism. The homomorphism Φ is called the covering map.

Universal covers are unique in the following sense:

Theorem 3.31. [7, Theorem 7.9] If G is a connected Lie group and (H1,Φ1) and

(H2,Φ2) are universal covers of G, then there exists a Lie group isomorphism Ψ : H1 −→
H2 such that Φ2 ◦Ψ = Φ1.

We have the following existence theorem for universal covers.

Theorem 3.32. [7, Theorem 7.7] Let G be a connected Lie group then there always

exists a universal cover of G.

Universal covers are objects which are discriminative of matrix Lie group. Above theorem

says that universal cover always exists but if G is a matrix Lie group then one would

expect that the universal cover also to be a matrix Lie group. But it is simply not true.

Consider for example the matrix Lie group SL(2,R). Its universal cover, the metaplectic

group is not a matrix Lie group.

Note that the requirement that G be a connected Lie group is a technical condition.

Given that many of the Lie groups are not connected is not a big obstacle. We can

restrict the connected component containing identity due to the following theorem.

Proposition 3.33. [10, Problem 15.3] Let G be a Lie group and G0 be the connected

component containing the identity. Then G0 is a Lie group with the same Lie algebra as

that of G.

Example 3.34. The universal cover of SO(3) is SU(2). The universal cover of the

Lorentz group SO(1, n) in various dimensions is called the Spin groups denoted by

Spin(1, n). In particular Spin(1, 3) ∼= SL(2,C).

12It is in particular the universal cover of the topological space G.
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4 Basic Representation Theory

We will begin be giving the definition and examples of representation of Lie groups and

Lie algebras.

4.1 Definitions and Examples

Definition 4.1. Let V be a finite dimensional13 vector space over C or R. Let GL(V )

denote the set of all invertible linear maps from V to V. Let End(V ) =: gl(V ) denote the

space of all linear operators on V . One can see that GL(V ) ∼= GL(n,C) and gl(V ) ∼=
M(n,C), so that GL(V ) can be thought of as a Lie group and gl(V ) as a Lie algebra

with bracket [X, Y ] = XY − Y X.

Definition 4.2. Let V be a finite dimensional vector space over F = C or R.

(i) A representation (Π, V ) of a Lie group G is a Lie group homomorphism

Π : G −→ GL(V ).

(ii) A representation (π, V ) of a Lie algebra g is a Lie algebra homomorphism

π : g −→ gl(V ).

If the homomorphisms are injective then the corresponding representation is called faith-

ful.

Remark 4.3. Since Π(g), π(x) are operators on V , we often say (Π, V ) and (π, V ) to be

a representation acting on V .

Example 4.4. (i) For any Lie group G and any Lie algebra g and any vector space

V , the map Π : G −→ GL(V ) and π : g −→ End(V ) given by Π(g) = 1V and

π(X) = 0 for every g ∈ G and X ∈ g is a representation. It is called the trivial

representation.

(ii) Let G be a matrix Lie group. Then (Π,Cn) where Π is defined as

Π :G −→ GL(Cn)

A→ Π(A)

where Π(A)(v) is defined by matrix multiplication of the column vector of v by A

with respect to a given basis of Cn. This is called the fundamental representation

of G. One can similarly define the fundamental representation of a Lie algebra of

a matrix Lie group.

13Extending these definitions and definitions hereafter to infinite dimensional vector space requires

some work. We will not pursue this in these notes.

17



(iii) Let G be a Lie group with Lie algebra g. Then we have a representation of G acting

on the vector space g given by Ad : G −→ GL(g), where Ad is as in Example 3.23.

There is an associated representation of the Lie algebra ad : g −→ End(g), where

again the ad map was defined in Example 3.23. These representations are called

the adjoint representation.

Definition 4.5. Let (Π, V ) be a representation of a Lie group G acting on V .

(i) A subspace W ⊂ V is said to be invariant subspace if Π(g)(w) ∈ W, ∀ g ∈ G and

w ∈ W .

(ii) The representation (Π, V ) is said to be an irreducible representation if only invariant

subspace of V are {0} and V .

These definitions are analogous for representations of Lie algebra.

Theorem 4.6. Let g be a Lie algebra. The adjoint representation of g is irreducible if

and only if g is simple.

Proof. ( =⇒ ) Suppose W is an invariant subspace of ad. Then [X,W ] ⊂ W for every

X ∈ g which implies that W is an ideal. Since g is simple, W = {0} or W = g.

(⇐=) Suppose W is an ideal of g. Then [X,W ] ⊂ W for every X ∈ g which implies that

W is an invariant subspace of ad. By irreducibility of ad, W = {0} or W = g and the

claim follows.

Definition 4.7. Let (Π1, V1) and (Π2, V2) be representations of a Lie group G. A linear

map φ : V1 −→ V2 is called an intertwiner if

φ (Π1(g)v) = Π2(g)(φ(v)), v ∈ V1.

Intertwiner for Lie algebra is defined analogously. If φ is an isomorphism of vector

spaces then (Π1, V1) and (Π2, V2) are said to be isomorphic representations and we write

Π1
∼= Π2.

Using Theorem 3.22, we see that given a representation (Π, V ) of a Lie group G, the

pushforward at identity will give a representation of the associated Lie algebra since Lie

algebra of GL(V ) is precisely gl(V ). Infact, as a consequence of Theorem 3.26, we have

a stronger statement in case of matrix Lie groups.

Theorem 4.8. [5, Proposition 4.4, Proposition 4.5] Let (Π, V ) be a representation of a

matrix Lie group G. Then there exists a unique representation (Π, V ) of the associated

Lie algebra g such that Π
(
eX
)

= eπ(X), ∀ X ∈ g. Moreover (Π, V ) is irreducible if and
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only if (π, V ) is irreducible. If (Π1, V1) and (Π2, V2) are any two Lie group representations

with corresponding Lie algebra representations π1, π2, then Π1
∼= Π2 if and only if π1

∼= π2.

Example 4.9. By Theorem 4.6, the adjoint map of Lie group G is irreducible if and

only if the corresponding Lie algbera is simple.

Of particular interest to us will be unitary representations.

Definition 4.10. Let V be a finite dimensional inner product space. A representation

(Π, V ) is called a unitary representation if Π(g) is a unitary operator for every g ∈ G.

Unitary representation of a Lie algebra is defined similarly.

4.2 Constructing New Representations from Old

We can construct new representations from old using direct sum and tensor product of

representations.

Definition 4.11. Let (Π1, V1) , (Π2, V2) be representations of a Lie groupG and (π1, V1) , (π2, V2)

be representations of a Lie algebra g.

(i) The direct sum of representations (Π1, V1) and (Π2, V2), denoted by (Π1 ⊕ Π2, V1 ⊕ V2),

acts on the direct sum V1 ⊕ V2 of vector spaces V1, V2 and is defined by

(Π1 ⊕ Π2) (g) (v1, v2) = (Π1(g)v1,Π2(g)v2) .

Similarly we can define direct sum of representations of Lie algebra (π1, V1) and

(π2, V2).

(ii) The tensor product of representations (Π1, V1) and (Π2, V2) denoted by (Π1 ⊗ Π2, V1 ⊗ V2),

acts on the tensor product V1 ⊗ V2 of vector spaces V1, V2 and is defined by

(Π1 ⊗ Π2) (g) (v1 ⊗ v2) = Π1(g) (v1)⊗ Π2(g) (v2) .

For Lie algebra, it is defined by

(π1 ⊗ π2) (X) (v1 ⊗ v2) = π1(X) (v1)⊗ v2 + v1 ⊗ π2(X) (v2) .

Definition 4.12. A representation acting on V is said to be unitrizable if there is an

inner product on V such that it becomes unitary representation.

Definition 4.13. A representation is said to be completely reducible if it is isomorphic

to the direct sum of irreducible representations.

Theorem 4.14. [5, Theorem 4.27, Theorem 4.28]
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(i) Every unitary representation is completely reducible.

(ii) Let (Π, V ) be a finite dimensional representation of a compact Lie group G. Then

(Π, V ) is unitrizable and hence completely reducible.

From above theorem, we see that we only need to study the irreducible representations

of a compact Lie group because every finite dimensional representation is completely

reducible.

Theorem 4.15. Let G be a noncompact connected Lie group with the Lie algebra being

simple. Then any unitary representation of G is not finite dimensional.

Another result which is wildly useful is Schur’s Lemma.

Theorem 4.16. (Schur’s Lemma) [5, Corollary 4.30] Let Π be an irreducible complex

representation of a matrix Lie group G. If A is in the center of G, then Π(A) = λI, for

some λ ∈ C. Similarly, if π is an irreducible complex representation of a Lie algebra g

and if [X, Y ] = 0 for every Y ∈ g, then π(X) = λI.

5 Method of Induced Representations: Mackey The-

ory

We want to classify all irreducible projective representations (see Section 6 for pre-

cise definitions) of the Poincaré group which is a semidirect product. Now since the

Poincaré group is noncompact and not simply connected, its representations are infinite

dimensional and are not in one-to-one correspondence with the representations of its

Lie algebra. So our strategy will be to pass on to the universal cover and classify all

unitary irreducible representation and come back to Poincaré group using some standard

results describes in next section (see Theorem 6.4 for the precise statement). So our first

task is to classify all unitary irreducible representations of the Poincaré group. Mackey’s

theory comes in handy at this point. It reduces the problem of describing irreducible

representation of a semidirect product to the calculation of certain orbits and stabilisers

and the irreducible representations of stabilisers. This is called the method of induced

representations. Let us begin by making some definitions.

5.1 Induced Representations

Definition 5.1. Let G be a Lie group and H a Lie subgroup. Suppose (Π,W ) is a

representation of H. Then the induced representation denoted by (IndHG (Π), IndHG (W ))
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acts on the vector space IndHG (W ) of functions:

IndHG (W ) := {φ : G −→ W | φ(hg) = Π(h)φ(g), ∀ h ∈ H, g ∈ G, φ smooth},

and G acts on IndHG (W ) as follows: for g ∈ G, IndHG (Π)(g) : IndHG (W ) −→ IndHG (W ) is

given by (
IndHG (Π)(g)(φ)

)
(g′) = φ (g′g) , φ ∈ IndHG (W ).

We need to show that IndHG (Π)(g)(φ) ∈ IndHG (W ).Indeed(
IndHG (Π)(g)(φ)

)
(hg′) =φ (hg′g) = Π(h)φ (g′g)

= Π(n)
(
IndHG (Π)(g)(φ)

)
(g′) .

It is also clear that IndHG (π)(g)(φ) is smooth. So we indeed have a representation.

5.2 Representation of Semi Direct Product

Let us now go to semidirect products. Let G = HnφN where N is an abelian Lie group.

Since we will consider these kinds of semidirect product, the next theorem is relavant.

Theorem 5.2. [5, Corollary 4.31] Let A be an abelian group. Then all irreducible

representations of A are 1 dimensional. Moreover, the irreducible characters of A form

a group Â:

Â := Hom (A,C∗)

which is the group of all group homomorphisms from A to C∗.

Recall that the composition law on H nφ N is

(h1, n1) · (h2, n2) = (h1h2, n1φ (h1) (n2))

We usually omit φ so that we can write φ(h)(n) =: h(n). We often say that H acts on

N via automorphisms. We will use this notation from now on. The inverse of (h, n) is(
h−1, h−1

(
n−1
))
,

and the identity is (eH , eN).

Lemma 5.3. G = H nN acts naturally on N as (h, n) · n′ = n · h (n′).

Proof. Straightforward verification.
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We now turn to unitary irreducible representations of the semidirect product. Observe

that if H acts on N via automorphisms then it induces a natural action of H on N̂ (see

Lemma 5.3 for this notation) as follows:

(h · χ)(n) = χ
(
h−1(n)

)
, h ∈ H,χ ∈ N̂ . (5.1)

Let the orbits of this action be denoted by Oi with representatives χi. Also let Hi = Hχi

be the stabiliser of χi.

Definition 5.4. By a section for the H-action on N̂ we mean a subset S ⊂ N̂ which

intersects every H-orbit in precisely one point. We shall call a section σ-compact if it is

a countable union of compact subsets of N̂ .

A character χ ∈ N̂ can be thought of as a one dimensional representation of Hχ nN as

follows:

χ : Hχ nN −→ C∗, χ(h, n) = χ(n).

We now have the following important result due to Mackey.

Theorem 5.5. (Mackey) [2, Theorem 11.6] Let G = H nN where N is an abelian Lie

group. Suppose that the action of H on N allows a σ-compact section. Let χ ∈ N̂ and

ξ be a unitary irreducible representation of Hχ, the stabiliser subgroup of χ. Then the

representation IndHnN
HχnN(ξ ⊗ χ) is a unitary irreducible representation of G. Moreover

every unitary irreducible representation of G is of this form. Furthermore

IndHnN
HχnN(ξ ⊗ χ) ∼= IndHnN

Hχ′nN(ξ′ ⊗ χ′)

if and only if there exists g ∈ G such that g · χ = χ′ and ξ ∼= ξ′ ◦ Cg where Cg is the

conjugate representation of G on itself.

Mackey’s theorem says that to find all unitary irreducible representations of G = HnN ,

find all orbits of H-action on N̂ and stabiliser of a representative from each orbit, and

find all unitary irreducible representations of the subgroup HχnN and induce. We will

see that this will simplify matters a lot in case of Poincaré group.

6 Irreducible Projective Representations of the Poincaré

Group

As we noted earlier, the Poincaré group is the semidirect product of generalised orthog-

onal group and the translation group. In physics literature, it is usually denoted by

IO(D − 1, 1) = O(D − 1, 1) nRD−1,1,
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where D is the spacetime dimension. But we will be interested in the connected com-

ponent of this group which is connected to identity – the space of inhomogenous or-

thochronous Lorentz transformations:

ISO(D − 1, 1) = SO(D − 1, 1)I nRD−1,1,

where

SO(D − 1, 1)I =
{

Λ ∈ SO(D − 1, 1) | Λ0
0 ≥ 0

}
is the component connected to identity. Clearly RD−1,1 is an abelian Lie group, so we

are in the setting of Mackey’s theorem.

Definition 6.1. The set of generators {Xi} of a Lie algebra g is the set of elements of

g such that the smallest subalgebra containing {Xi} is g.

The Lie algebra of ISO(D − 1, 1) is denoted by iso(D − 1, 1). It can be shown that

iso(D − 1, 1) is generated by {Mµν , Pρ} , µ, ν, ρ = 0, 1, . . . , D − 1, and the generators

satisfy the Poincaré algebra:

iMµν ,Mρσ] = ηνρMµσ − ηµρMνσ − ησµMρν + ησνMρµ

i [Pµ,Mρσ] = ηµρPσ − ηµσPρ,
i [Pµ, Pρ] = 0.

Two subalgebras of iso(D − 1, 1) are clearly visible: The Lorentz algebra generated by

{Mµ} and the subalgebra RD generated by {Pµ}. The second commutator says that RD

is an ideal of iso(D − 1, 1). Infact it can be shown that

iso(D − 1, 1) = so(D − 1, 1) B RD

where B is the semidirect sum which we will not define here and hence will not be used.

Let us now consider the Minkowski space.

Definition 6.2. By a pseudo-Riemannian manifold (M, g), we mean a smooth manifold

M endowed with a pseudo-Riemannian metric g. If Diff(M) is the diffeomorphism group

of M then we define the automorphism group of M by

Aut(M) = {φ ∈ Diff(M) | φ∗g = g}

where φ∗ is the pullback of φ.

6.1 Projective Representations

Let |Ψ〉 be a state in Hilbert space H. Note that any two states |Ψ〉 and |Φ〉 which are

nonzero and related by

|Ψ〉 = λ|Φ〉 λ ∈ C∗ := C\{0} (6.1)
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are the same quantum mechanical states. So it is pertinent to consider the quotient space

of H∗ = H\{0} as P(H) := H∗/ ∼ where |Ψ〉 ∼ |Φ〉 if and only if (6.1) is true. The

quotient space P(H) is called the projectivised Hilbert space. Recall that the probability

amplitude of transition from |Ψ〉 to Φ is given by

p(|Ψ〉, |Φ〉) =
〈Ψ | Φ〉

〈Ψ | Ψ〉〈Φ | Φ〉
.

In the quotient topology on P(H), p induces a continuous map14 on P(H) which we

denote by p̃. A homeomorphism T : P(H) −→ P(H) satisfying

p̃(T [Ψ], T [Φ]) = p̃(|Ψ〉, |Φ〉)

where [Φ], [Ψ] are equivalence classes in P(H), is called a projective automorphism. The

set of all such maps, denoted by Aut(P(H)), is a group called projective automorphism

group. The action of this group on P(H) leaves transition probabilities invariant. We

have the following theorem regarding the automorphism group of the Minkowski space.

Theorem 6.3. [2, Lemma 13.1] The automorphism group of the Minkowski space RD−1,1

is the Poincaré group ISO(D − 1, 1).

Now consider a particle in the Minkowski space RD−1,1. By above, the symmetry group

of this space is precisely the Poincaré group. Let two observers O and O′, related by Λ ∈
ISO(D− 1, 1), measure the quantum mechanical particle. In general, their measurement

result will reveal different states, say [Ψ] and [Ψ′] respectively. Thus physically one

expects that transition probabilities in O and O′ be same. This means that the two

states must be related by some projective automorphism:

[Ψ] = TΛ[Ψ′], for some TΛ ∈ Aut(P(H)).

If O = O′ then TΛ = Id and we should have TΛ = TId = Id ∈Aut(P(H)). Lastly if a third

observer O′′, related to O′ by Γ, measures the state then we must impose TΛ ◦TΓ = TΛ◦Γ.

Thus the change of frame induces a representation Π : ISO(D − 1, 1) −→ Aut(P(H)).

This is called the projective representation.

6.2 Wigner’s Idea of Elementary Particles

The representation (Π,H) of the Poincaré group is called irreducible if the only non-

trivial closed invariant subspace of H is H. That is Π(ISO(D − 1, 1))(V ) ⊆ V if and

only if V = H. The closed condition is technical: we want the invariant subspace to be

14it is a standard result in quotient topology. See for example Topology by Munkres.

24



a Hilbert space in its own right which is not automatically true in infinite dimensional

Hilbert space unless the subspace is closed.

Wigner suggested that the irreducible projective representations of the Poincaré group

correspond to elementary particles within the quantum system under consideration.

Wigner’s argument was as follows: an elementary particle in a quantum mechanical

system is a vector in P(H). As discussed, different observers will see different vectors in

P(H) corresponding to the elementary particle. All these vectors must be related by some

projective automorphism. The set of all these vectors constitutes ISO(D−1, 1)-invariant

subspace of P(H) and hence we obtain a subrepresention of (Π,H). This subrepresenta-

tion can be thought of as a subsystem which is elementary if it is irreducible (otherwise

it will have more smaller subsystems). This reduces the problem of determining all rel-

ativistic free particles in Minkowski spacetime to the mathematical task of finding all

irreducible projective representations of the Poincaré group.

6.3 Using Mackey’s Theorem

We have to find all projective irreducible representations of the Poincaré group. We need

to pass on to the universal cover of the Poincaré group. Recall that the universal cover of

Lorentz group is the spin group Spin(D− 1, 1). Let Φ : Spin(D− 1, 1) −→ SO(D− 1, 1)

be the covering map. One can then show that the universal cover of the Poincaré group

is Spin(D − 1, 1) n RD−1,1 where now in the semidirect product, Spin(D − 1, 1) acts on

RD−1,1 via a the covering map:

A · v := Φ(A)v, A ∈ Spin(D − 1, 1), v ∈ RD−1,1,

where the later action Φ(A)v is the usual action by matrix multiplication. The following

theorem will be of utmost importance.

Theorem 6.4. [2, Theorem 14.3, Corollary 14.4] Every irreducible unitary represen-

tation of Spin(D − 1, 1) n RD−1,1 in a complex Hilbert space H naturally induces an

irreducible projective representation of the Poincaré group in H. Moreover every pro-

jective representation of the Poincaré group lifts to a unique unitary representation of

Spin(D−1, 1)nRD−1,1 and the latter is irreducible if and only if the formar is irreducible.

This sets up a bijective correspondence between the projective irreducible representations

of the Poincaré group and unitary irreducible representations of Spin(1, D− 1)nR1,D−1

We stress that this is not true in general. It has to do something with the second

cohomology group being trivial. We shall not comment on this any further. Thus our

strategy will be to classify all irreducible unitary representations of Spin(D−1, 1)nRD−1,1
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using Mackey’s theorem and then use the above theorem to get all irreducible projective

representations of the Poincaré group. Before we go on the task of using Mackey’s

theorem, let us see how to get a projective representation of the Poincaré group from

unitary representation of the universal cover.

Indeed suppose Π : Spin(D − 1, 1) n RD−1,1 −→ GL(H) be a representation. Now

it is known that Spin(D − 1, 1) n RD−1,1 is the double cover of the Poincaré group

with the kernel {e, e′} of the covering map Φ isomorphic to Z2. It also happens to be

the center of Spin(D − 1, 1) n RD−1,1. Thus by Schur’s lemma, kernel acts as scalars.

Suppose Π(e) = 1H and Π(e′) = λ1H for some λ ∈ C∗. It is clear that Π(e) = Π(e′) =

1P(H) on the projectivised Hilbert space. Thus the representation Π induces a projective

representation Π′ of Spin(D − 1, 1) n RD−1,1. Now using the inverse of the covering

map and the fact that Π′ is trivial on kernel of Φ, it is easy to see that the the map

Π̃ = Π′ ◦ Φ−1 furnishes a projective representation of the Poincaré group on the Hilbert

space H. In this way we get a projective representation of the Poincaré corresponding

to each unitary representation of the universal cover and the above theorem makes sure

that these are all the projective representations of the Poincaré group.

Now the next task is to find orbits and stabilisers. We first reduce this to a simpler

problem.

Theorem 6.5. [1, Proposition 4.8] The map T : RD−1,1 −→ R̂D−1,1 given by T (v)(x) =

e2g(v,x), where g(v, x) = v · x is the Minkowski metric of the Minkowski space, is an

isomorphism. Moreover v ∈ RD−1,1 is Spin(D − 1, 1)-stable (Spin(D − 1, 1) acts on

RD−1,1 via automorphism coming from the semidirect product structure) if and only if

χ = T (v) is Spin(D − 1, 1)-stable in the action defined in Eq. 5.1.

This theorem says that if χ ∈ R̂D−1,1 then there exists v ∈ RD−1,1 such that T (v) = χ

and that for A ∈ Spin(D − 1, 1)

A · v = Φ(A)v ←→ A · χ = χ

where

(A · χ)(x) = χ(A−1 · x) = χ(Φ(A)−1x).

Now since Φ is surjective by definition, the problem reduces to finding the orbits a

stabilisers of the action on RD−1,1. The computation of orbit is a bit technical, so we

just mention the result here for the ease of understanding. The orbits are Labelled by

c ∈ R.

(i) g(v, v) = v2 = m2 > 0. The orbit is a one-sheeted hyperboloid and the stabiliser is

Spin(D − 2, 1) ↪→ Spin(D − 1, 1).
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(ii) g(v, v) = v2 = 0. The orbit is a cone with vertex at the origin – the lightcone of

special relativity. The stabiliser is isomorphic to the Euclidean group ISO(D − 2).

(iii) g(v, v) = v2 = −m2 < 0. The orbit is a two sheeted hyperboloid corresponding to

v0 > 0 or v0 < 0. The stability group is Spin(D − 1).

Note that SO(D − 1, 1)I also preserves the sign of v0 if v2 < 0. We now need to classify

Gender Orbit Little Group Unitary Representation

v2 = −m2 Mass shell Spin(D − 1) Massive

v2 = m2 Hyperboloid Spin(D − 2, 1) Tachyonic

v2 = 0 Lightcone ISO(D − 2) Massless

v = 0 Origin Spin(D − 1, 1) Zero Momentum

Table 2: Orbits and Stabilisers

all unitary irreducible representations of the stability groups. For physical applications,

Tachyonic representations are irrelevant. So we only have to find unitary irreducible

representations of the remaining three. We analyse them case by case.

(i) For the zero momentum representation corresponding to orbit v = 0, the stability

group is Spin(D− 1, 1) which is simply connected but not compact with simple Lie

algebra and hence its unitary irreducible representations are all infinite dimensional.

Hence analysing its irreducible representations is hard and we shall not pursue it

any further.

(ii) For the massive representation, the stability group is Spin(D − 1) which is com-

pact and simply connected, so all its unitary irreducible representations are finite

dimensional. Thus we can classify its unitary irreducible representations by going

to its Lie algebra and using weights and roots. We omit all further details of this

classification as it deserves another set of discussions altogether.

(iii) The massless representation corresponds to orbit v2 = 0 whose stability group is

ISO(D − 2) = SO(D − 2) n RD−2. We can again use Mackey’s theorem here to

get all unitary irreducible representations. The SO(D−2)-action breaks RD−2 into

two orbits:

• A sphere of radius µ2 > 0 with stability group SO(D − 3) is compact. The

unitary irreducible representation corresponding to this orbit is called Infinite

spin.
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• The origin with stability group SO(D−3) which is again compact. The unitary

irreducible representation corresponding to this orbit is called Helicity.

We will again not delve into the details.

6.4 Four Dimensional Spacetime

We now specialise to the D = 4 case. This case is standard for quantum field theory and

Particle physics applications. In this case the massive and massless representations are

well known:

(i) v2 = −m2 < 0, the stability group is Spin(3) ∼= SU(2) which is a compact, simply

connected Lie group. All its unitary irreducible representations are labelled by

s ∈ 1
2
N ∪ {0} called spin of particle. The representation is realised on C2s+1 and

hence it is 2s+ 1 dimensional.

(ii) v2 = 0 with stability group SO(2) nR2. The orbits of SO(2)-action on R2 has two

orbits.

• a circle with radius r > 0 with stability group SO(1). It gives rise to the trivial

representation.

• the origin with stability group SO(2). The irreducible representation of the

abelian group SO(2) are all one dimensional. They are Labelled by n ∈ Z. It

is customary to write n = 2s with s ∈ 1
2
Z. The modulus |s| is called the spin

of the representation and the sign of s is called the polarisation.

6.4.1 The Mass-Squared Parameter

The orbits are labelled by m2 which has a natural physical interpretation of mass squared

of the particle. We will investigate this in this section. To do so, we first introduce the

universal enveloping algebra and Casimir element.

Definition 6.6. An algebra A is a vector space over a field k along with a multiplication

map µ : A× A −→ A, (a, b) 7−→ µ(a, b) =: a · b satisfying: for all a, b ∈ A and r ∈ k,

1. (Associativity) a · (b · c) = (a · b) · c.

2. (Distributivity) a · (b+ c) = a · b+ a · c.

3. (Homogeneity) r(a · b) = (ra) · b = a · (rb).

A is called an algebra with identity if there exists an identity with respect to the multi-

plication operation µ.
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Due the associativity, we sometimes call A an associative algebra. The universal en-

veloping algebra is defined by the universal property as below:

Theorem 6.7. [5, Theorem 9.7] Let g be a Lie algebra, then there exists an associative

algebra U(g) with identity together with a linear map i : g −→ U(g) such that the following

properties hold:

(i) For every X, Y ∈ g, we have

i ([X, Y ]) = i(X)i(Y )− i(Y )i(X).

(ii) U(g) is generated by the set i(X) X ∈ g in the sense that the smallest subalgebra

with identity of U(g) containing every i(X) is U(g).

(iii) (Universal property) If A is an associative algebra with identity linear map j : g −→
A such that j ([X, Y ]) = j(X)j(Y )− j(Y )j(X), then there exists a unique algebra

homomorphism φ : U(g) −→ A with φ(1g) = 1A and φ(i(X)) = j(X) ∀ X ∈ g.

A pair (U(g), i) with the above three properties is called the universal enveloping

algebra.

The following proposition will be useful. Let End(V ) denote the vector space of linear

operators from V to V . It is easy to show that End(V ) is an associative algebra under

composition.

Proposition 6.8. If π : g −→ End(V ) is a representation of a Lie algebra (possibly

infinite dimensional), there is a unique algebra homomorphism π̃ : U(g) −→ End(V )

such that π̃(1) = 1V and π̃ ◦ i = π.

Proof. Immediate from the Universal Property of universal enveloping algebra.

Theorem 6.9. [5, Theorem 9.10](Poincaré-Birkhoff-Witt (PBW) Theorem) If g is a

finite dimensional Lie algebra with basis X1, . . . , Xk, then elements of the form

i (X1)n1 i (X2)n2 · · · i (Xk)
nk

where each nk is a nonnegative integer, span U(g) and are linearly independent. In

particular, the elements i (X1) , . . . , i (Xk) are linearly independent, meaning that the

map i : g −→ U(g) is injective.

Definition 6.10. Let g be a Lie algebra with the universal enveloping algebra U(g).

The Casimir elements of g are homogeneous polynomials in the generators of g which

commute with all elements of g hence with all elements of U(g) (by PBW theorem).

Thus the Casimir elements lie in the center Z(U(g)) of g.
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As a consequence of Schur’s Lemma, we have the following theorem.

Theorem 6.11. Let g be a Lie algebra. For any irreducible representation, the Casimirs

of g act as scalars.

Proof. Immediate from Schur’s Lemma.

For the Lie algebra so(D − 1, 1) of the Lorentz group, the quadratic Casimir elements

are

C2(so(D − 1, 1)) =
1

2
MµνMµν

where we have summation over µ, ν is as follows:

MµνMµν = ηµρηνσM
µνMρσ (sum over repeated index),

where ηµν = ηµν = dia(−1, 1, 1, . . . 1︸ ︷︷ ︸
D−1

) is the Minkowski metric. For the Poincaré algebra

iso(D − 1, 1), the quadratic Casimir element is

C2(iso(D − 1, 1)) = P µPµ = P 2

and the quartic Casimir elements are

C4(iso(D − 1, 1)) =
1

2
P 2MµνM

µν +MµρP
ρMµσPσ.

Suppose now that Π is a representation of the Poincaré group on a Hilbert space H.

Recall that it induces a representation π of the Lie algebra on the H. Moreover recall

that

Π
(
eiX
)

= eiπ(x)

for every X in the Lie algebra (we used the physicists convention of putting an i). In

particular for P µ ∈ iso(D − 1, 1), we have

Π
(
eiPµ

)
|ψ〉 = eiπ(Pµ)|ψ〉 = π(Tµ)|ψ〉,

where Tµ is the unit translation. The last equality comes from the fact that Pµ gener-

ates translations in spacetime. We now apply Mackey’s theorem to the universal cover

of the Poincaré group, i.e. to G = Spin(D − 1, 1) n RD−1,1. Any unitary irreducible

representation of G is of induced type. Thus we can identify H with the space of con-

tinuous functions on G with some transformation property with respect to the stabiliser

subgroup:

H = IndGGχ (ξ ⊗ χ) = {φ : G −→ Vξ | φ((h, n)g) = χ(n)ξ(h)φ(g);φ is continuous}
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Gχ := Spin(D− 1, 1)χnRD−1,1 with Spin(D− 1, 1)χ being the stabiliser of χ and (ξ, Vξ)

is a representation of Spin(D − 1, 1)χ.

Using Theorem 3.26 (iii), we get

(π (Pµ)φ) (g) =

[(
d

dt
Π
(
etPµ

)∣∣∣∣
t=0

)
φ

]
(g)

=
d

dt

(
φ
(
g · etPµ

))∣∣∣∣
t=0

where we used the fact that evaluation of φ at g is linear and hence commutes with time

derivative. Now by the property of universal enveloping algebra, the representation π

lifts to a homomorphism π̃ : U(g) −→ End(H) of associative algebras. Then for X ∈ g

and the identity e ∈ G,

(π(X)φ)(e) =
d

dt
φ(e exp(tX))

∣∣∣∣
t=0

=
d

dt
φ(ext(tX)e)

∣∣∣∣
t=0

=
d

dt
χ(exp(tX))ξ(e)φ(e)

∣∣∣∣
t=0

=
d

dt
χ(exp(tX))φ(e)

= χ∗(X)φ(e)

where χ∗ is the Lie algebra homomorphism corresponding to the Lie group homomor-

phism χ. Using these we have

π̃ (P µPµ) = −π
(
P 0
)2

+
D−1∑
i=1

π(P i)2

which gives

(π̃ (P µPµ)φ) (e) =

(
−χ∗(P 0)2 +

D−1∑
i=1

χ∗(P
i)2

)
φ(e). (6.2)

But now by Theorem 6.11, since (Π,H) is an irreducible representation, P µPµ acts as

scalar. So we have

(π̃(P µPµ)φ = λφ, for some λ ∈ C.

So we evaluate it at identity to get λ. Eq. 6.2 gives

λ = −χ∗
(
P 0
)2

+
D−1∑
i=1

χ∗
(
P i
)2
.

31



Now recall that for character χ, there exists v ∈ RD−1,1 such that

χ(ω) = eig(v,ω).

so

χ∗(X) = ig(v,X),

so that χ∗ (P µ) = ig (v, P µ). Note that P µ ∈ RD is just the µth basis vector multiplied

by −i (due to i in eiP
µ
). Thus ig (v, P µ) = vµ, so we have

λ = −
(
v0
)2

+
D−1∑
i=1

(
vi
)2

= g(v, v) = m2.

Thus π̃ (P µPµ) = m2. In physics literature, π (P µPµ) is simply denoted by P µPµ and

we identify P µPµ = m2. We recognise this as the total relativistic energy. Thus m is

identified with the mass of the particle.
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